OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 7 — Apr. 1, 2009
  • pp: 1087–1089

Nanocavity plasmonic device for ultrabroadband single molecule sensing

Ryan M. Gelfand, Lukas Bruderer, and Hooman Mohseni  »View Author Affiliations

Optics Letters, Vol. 34, Issue 7, pp. 1087-1089 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new structure that combines a metal–dielectric–metal sandwich with a periodic structure to form a plasmon polariton photonic crystal. Three-dimensional finite-difference time-domain simulations show a clear bandgap in the terahertz regime. We exploited this property by adding a defect to the crystal, which produces a cavity with a quality factor of 23.3 at a wavelength of 3.45 μ m . Despite the small Q factor, the ultrasmall sensing volume of 15 zeptoliters produces an extremely large Purcell constant of 4.8 × 10 6 . Compared to photonic crystals with similar Purcell constant, the bandwidth is several orders of magnitude larger, or about 7 THz , ensuring high tolerances to manufacturing parameters, and environmental changes, as well as a high specificity owing to the possibility of broadband spectral fingerprint detection.

© 2009 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(040.2235) Detectors : Far infrared or terahertz
(160.5298) Materials : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 17, 2008
Revised Manuscript: January 26, 2009
Manuscript Accepted: February 27, 2009
Published: March 30, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Ryan M. Gelfand, Lukas Bruderer, and Hooman Mohseni, "Nanocavity plasmonic device for ultrabroadband single molecule sensing," Opt. Lett. 34, 1087-1089 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005). [CrossRef]
  2. B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002). [CrossRef]
  3. L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008). [CrossRef]
  4. M. Tonouchi, Nat. Photonics 1, 97 (2007). [CrossRef]
  5. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002). [CrossRef] [PubMed]
  6. S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007). [CrossRef]
  7. M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008). [CrossRef]
  8. Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007). [CrossRef]
  9. G. Veronis and S. Fan, Opt. Express 15, 1211 (2007). [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008). [CrossRef]
  11. K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008). [CrossRef] [PubMed]
  12. J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007). [CrossRef]
  13. S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005). [CrossRef]
  14. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004). [CrossRef] [PubMed]
  15. H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006). [CrossRef]
  16. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).
  17. T. F. Krauss, Nature Mater. 2, 777 (2003). [CrossRef]
  18. Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003). [CrossRef] [PubMed]
  19. B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005). [CrossRef]
  20. N. I. Zheludev, Nat. Photonics 2, 351 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited