OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 8 — Apr. 15, 2009
  • pp: 1189–1191

Generation of optical vector beams using a two-mode fiber

Nirmal K. Viswanathan and V. V.G.Krishna Inavalli  »View Author Affiliations

Optics Letters, Vol. 34, Issue 8, pp. 1189-1191 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian ( TEM 00 ) beam into linearly polarized Hermite–Gaussian ( HG 10 , HG 01 ) beams, a radially polarized Laguerre–Gaussian ( LG 0 1 ) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: January 14, 2009
Revised Manuscript: March 10, 2009
Manuscript Accepted: March 10, 2009
Published: April 7, 2009

Nirmal K. Viswanathan and V. V. G. Inavalli, "Generation of optical vector beams using a two-mode fiber," Opt. Lett. 34, 1189-1191 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003). [CrossRef]
  2. L. E. Helseth, Opt. Commun. 191, 161 (2001). [CrossRef]
  3. R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990). [CrossRef]
  4. Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002). [CrossRef] [PubMed]
  5. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000). [CrossRef] [PubMed]
  6. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007). [CrossRef]
  7. Q. Zhan, Adv. Opt. Photonics 1, 1 (2009). [CrossRef]
  8. B. E. A. Saleh and M. C. Teich (Wiley, 2008).
  9. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002). [CrossRef]
  10. A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).
  11. G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004). [CrossRef]
  12. A. W. Snyder and J. D. Love (Chapman and Hall, 1983).
  13. V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. A 46, 5199 (1992). [CrossRef] [PubMed]
  14. A. Yu. Savchencko and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 13, 273 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited