OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 8 — Apr. 15, 2009
  • pp: 1207–1209

Brewster cross polarization

A. Aiello, M. Merano, and J. P. Woerdman  »View Author Affiliations

Optics Letters, Vol. 34, Issue 8, pp. 1207-1209 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically derive the polarization-resolved intensity distribution of a TM-polarized fundamental Gaussian beam reflected by an air–glass plane interface at Brewster incidence. The reflected beam has both a dominant (TM) and a cross-polarized (TM) component, carried by a TEM 10 and a TEM 01 Hermite–Gaussian spatial mode, respectively. Remarkably, we find that the TE-mode power scales quadratically with the angular spread of the incident beam and is comparable to the TM-mode power. Experimental confirmations of the theoretical results are also presented.

© 2009 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Optics at Surfaces

Original Manuscript: January 26, 2009
Revised Manuscript: March 12, 2009
Manuscript Accepted: March 13, 2009
Published: April 8, 2009

A. Aiello, M. Merano, and J. P. Woerdman, "Brewster cross polarization," Opt. Lett. 34, 1207-1209 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Brewster, Philos. Trans. R. Soc. London 105, 125 (1815). [CrossRef]
  2. Y. Fainman and J. Shamir, Appl. Opt. 23, 3188 (1984). [CrossRef] [PubMed]
  3. A. Kőházi-Kis, Opt. Commun. 253, 28 (2005). [CrossRef]
  4. Q. Li and R. J. Vernon, IEEE Trans. Antennas Propag. 54, 3449 (2006). [CrossRef]
  5. W. Nasalski, Opt. Commun. 197, 217 (2001). [CrossRef]
  6. W. Nasalski and Y. Pagani, J. Opt. A 8, 21 (2006).
  7. K. Yu. Bliokh and Y. P. Bliokh, Phys. Rev. Lett. 96, 073903 (2006). [CrossRef]
  8. A. Aiello and J. P. Woerdman, Opt. Lett. 33, 1437 (2008). [CrossRef] [PubMed]
  9. Throughout this Letter we use the symbols “⋅” and “×” to denote the ordinary scalar and vector products in R3, respectively.
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, 1st ed. (Cambridge U. Press, 1995).
  11. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2003).
  12. R. F. Gragg, Am. J. Phys. 56, 1092 (1988). [CrossRef]
  13. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). [CrossRef]
  14. I. H. Deutsch and J. C. Garrison, Phys. Rev. A 43, 2498 (1991). [CrossRef] [PubMed]
  15. A. Aiello, M. Merano, and J. P. Woerdman, arXiv:0903.1950v1 [Phys. Opt.] (2009).
  16. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Appl. Opt. 26, 1589 (1987). [CrossRef] [PubMed]
  17. W. L. Erikson and S. Singh, Phys. Rev. E 49, 5778 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited