OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 8 — Apr. 15, 2009
  • pp: 1237–1239

Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device

Ranjith Rajasekharan-Unnithan, Haider Butt, and Timothy D. Wilkinson  »View Author Affiliations


Optics Letters, Vol. 34, Issue 8, pp. 1237-1239 (2009)
http://dx.doi.org/10.1364/OL.34.001237


View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices
(350.4600) Other areas of optics : Optical engineering
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: January 26, 2009
Revised Manuscript: February 27, 2009
Manuscript Accepted: March 4, 2009
Published: April 10, 2009

Citation
Ranjith Rajasekharan-Unnithan, Haider Butt, and Timothy D. Wilkinson, "Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device," Opt. Lett. 34, 1237-1239 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-8-1237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lee, C.-Y. Wang, and Y.-C. Shih, Appl. Phys. Lett. 85, 513 (2004). [CrossRef]
  2. O. Trushkevych, N. Collings, T. Hasan, V. Scardaci, A. C. Ferrari, T. D. Wilkinson, W. A. Crossland, W. I. Milne, J. Geng, B. F. G. Johnson, and S. Macaulay, J. Phys. D 41, 125106 (2008). [CrossRef]
  3. S. J. Jeong, P. Sureshkumar, K.-U. Jeong, A. K. Srivastava, S. H. Lee, S. H. Jeong, Y. H. Lee, R. Lu, and S.-T. Wu, Opt. Express 15, 11698 (2007). [CrossRef] [PubMed]
  4. T. D. Wilkinson, Xiaozhi Wang, Ken B. K. Teo, and William I. Milne, Adv. Mater. (Weinheim, Ger.) 20, 363 (2008). [CrossRef]
  5. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, Diamond Relat. Mater. 12, 422 (2003). [CrossRef]
  6. P. Hariharan, Optical Interferometry (Academic, 1985), pp. 157-159.
  7. C. Roddier and F. Roddier, Appl. Opt. 26, 1668 (1987). [CrossRef] [PubMed]
  8. J. William and W. Macy, Appl. Opt. 22, 3898 (1983). [CrossRef]
  9. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982). [CrossRef]
  10. M. Ye, Y. Yokoyama, and S. Sato, Appl. Phys. Lett. 89, 141112 (2006). [CrossRef]
  11. H. Ren and S. T. Wu, Opt. Express 15, 11328 (2007). [CrossRef] [PubMed]
  12. H. Ren, Y. H. Fan, and S. T. Wu, Appl. Phys. Lett. 82, 22 (2003). [CrossRef]
  13. G. Li, D. Mathine, P. Valley, P. Äyräs, J. Haddock, M. Giridhar, G. Williby, J. Schwiegerling, G. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, Proc. Natl. Acad. Sci. U.S.A. 103, 6100 (2006). [CrossRef] [PubMed]
  14. X. Deng. X. Liang, Z. Chen, W. Yu, and R. Ma, Appl. Opt. 25, 377 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited