OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 8 — Apr. 15, 2009
  • pp: 1252–1254

Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector

Mukesh Kumar, Takahiro Sakaguchi, and Fumio Koyama  »View Author Affiliations

Optics Letters, Vol. 34, Issue 8, pp. 1252-1254 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable Bragg reflector based on a 3D hollow waveguide (HWG) has been proposed. Ultrawide tuning ranges of 152 nm and 164 nm , respectively, in Bragg wavelengths of TE and TM modes of the Bragg reflector have been presented experimentally. With a 3D hat-shaped HWG, a giant birefringence of 0.012 has been demonstrated that can be varied with a variable air core to realize tunable polarization-manipulating devices. The ultrawide tuning in Bragg wavelength can be utilized to make a number of widely tunable photonic devices based on the proposed 3D HWG Bragg reflector.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

Original Manuscript: March 4, 2009
Revised Manuscript: March 16, 2009
Manuscript Accepted: March 16, 2009
Published: April 10, 2009

Mukesh Kumar, Takahiro Sakaguchi, and Fumio Koyama, "Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector," Opt. Lett. 34, 1252-1254 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976). [CrossRef]
  2. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000). [CrossRef] [PubMed]
  3. M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986). [CrossRef]
  4. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001). [CrossRef] [PubMed]
  5. R. M. Jenkins, M. E. McNie, A. F. Blockley, N. Price, and J. MaQuillan, in Proceedings of Optoelectronics and Communications Conference and Conference on Optical Internet (2004).
  6. T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, Jpn. J. Appl. Phys., Part 2 40, L688 (2001). [CrossRef]
  7. T. Miura, F. Koyama, and A. Matsutani, IEEE Photonics Technol. Lett. 15, 1240 (2003). [CrossRef]
  8. Y. Sakurai, A. Matsutani, and F. Koyama, Appl. Phys. Lett. 88, 121103 (2006). [CrossRef]
  9. T. Badreldin, K. Madkour, and D. Khalil, J. Opt. A 9, 88 (2007).
  10. T. Miura and Fumio Koyama, in The 16th Annual Meeting of the IEEE Laser and Electro-Optics Society (2003), paper ThH4.
  11. Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, Appl. Phys. Lett. 86, 071111 (2005). [CrossRef]
  12. F. Koyama, T. Miura, and Y. Sakurai, IEICE Trans. Electron. J88-C, 388 (2005).
  13. M. Kumar, T. Sakaguchi, and F. Koyama, J. Lightwave Technol. 26, 1417 (2008). [CrossRef]
  14. L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, IEEE Photonics Technol. Lett. 19, 1673 (2007). [CrossRef]
  15. S. Lee, R. Khosravani, J. Peng, V. Grubsky, D. S. Starodubov, A. E. Willner, and J. Feinberg, IEEE Photonics Technol. Lett. 11, 1277 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited