OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 9 — May. 1, 2009
  • pp: 1357–1359

Cladding-modulated Bragg gratings in silicon waveguides

D. T.H. Tan, K. Ikeda, and Y. Fainman  »View Author Affiliations

Optics Letters, Vol. 34, Issue 9, pp. 1357-1359 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cladding-modulated Bragg grating implemented using periodic placements of cylinders along a waveguide is proposed in a silicon-on-insulator platform. The coupling strength is varied by changing the distance between the cylinders and the waveguide. This implementation enables precise control and a wide dynamic range of coupling strengths and bandwidths that can be practically achieved for applications with specific bandwidth requirements. Modeling results are verified experimentally, and we demonstrate coupling strengths differing by 1 order of magnitude (43 and 921   per   cm ) with bandwidths of 8 and 16 nm , respectively. This method scheme enables weakly coupled devices with high fabrication tolerance to be realized.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: January 16, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 24, 2009
Published: April 22, 2009

D. T. H. Tan, K. Ikeda, and Y. Fainman, "Cladding-modulated Bragg gratings in silicon waveguides," Opt. Lett. 34, 1357-1359 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997). [CrossRef]
  3. H. C. Kim, K. Ikeda, and Y. Fainman, Opt. Lett. 32, 539 (2007). [CrossRef] [PubMed]
  4. K. Ikeda, M. Nezhad, and Y. Fainman, Appl. Phys. Lett. 92, 201111 (2008). [CrossRef]
  5. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, Opt. Lett. 33, 3013 (2008). [CrossRef] [PubMed]
  6. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002). [CrossRef]
  7. T. E. Murphy, J. T. Hastings, and H. I. Smith, J. Lightwave Technol. 19, 1938 (2001). [CrossRef]
  8. A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973). [CrossRef]
  9. W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975). [CrossRef]
  10. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974). [CrossRef]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited