OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 9 — May. 1, 2009
  • pp: 1375–1377

Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures

Saso Mladenovski, Sebastian Reineke, and Kristiaan Neyts  »View Author Affiliations


Optics Letters, Vol. 34, Issue 9, pp. 1375-1377 (2009)
http://dx.doi.org/10.1364/OL.34.001375


View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The decay time of an exciton depends on the coupling between the dipole oscillator and the optical environment in which it is placed. For an organic light-emitting device this environment is determined by the thin-film layer structure. The radiative decay competes with nonradiative decay channels and in this way influences the luminescent efficiency and the external quantum efficiency of the device. We describe a method to estimate the dependency of the exciton decay time and the luminescent efficiency on the thin-film stack and validate the results experimentally.

© 2009 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(310.6860) Thin films : Thin films, optical properties
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

History
Original Manuscript: February 12, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 27, 2009
Published: April 22, 2009

Citation
Saso Mladenovski, Sebastian Reineke, and Kristiaan Neyts, "Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures," Opt. Lett. 34, 1375-1377 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1375

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited