OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 9 — May. 1, 2009
  • pp: 1375–1377

Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures

Saso Mladenovski, Sebastian Reineke, and Kristiaan Neyts  »View Author Affiliations

Optics Letters, Vol. 34, Issue 9, pp. 1375-1377 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The decay time of an exciton depends on the coupling between the dipole oscillator and the optical environment in which it is placed. For an organic light-emitting device this environment is determined by the thin-film layer structure. The radiative decay competes with nonradiative decay channels and in this way influences the luminescent efficiency and the external quantum efficiency of the device. We describe a method to estimate the dependency of the exciton decay time and the luminescent efficiency on the thin-film stack and validate the results experimentally.

© 2009 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(310.6860) Thin films : Thin films, optical properties
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

Original Manuscript: February 12, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 27, 2009
Published: April 22, 2009

Saso Mladenovski, Sebastian Reineke, and Kristiaan Neyts, "Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures," Opt. Lett. 34, 1375-1377 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002). [CrossRef]
  2. R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974). [CrossRef]
  3. Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006). [CrossRef]
  4. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008). [CrossRef]
  5. K. Neyts, J. Opt. Soc. Am. A 15, 962 (1998). [CrossRef]
  6. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007). [CrossRef]
  7. K. Neyts, Appl. Surf. Sci. 244, 517 (2005). [CrossRef]
  8. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004). [CrossRef]
  9. S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008). [CrossRef]
  10. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000). [CrossRef]
  11. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited