OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 9 — May. 1, 2009
  • pp: 1402–1404

Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe

Mumtaz Sheikh and Nabeel A. Riza  »View Author Affiliations

Optics Letters, Vol. 34, Issue 9, pp. 1402-1404 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry–Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000 ° C are experimentally demonstrated with an estimated resolution varying from 0.66 ° C at room temperature to 0.12 ° C at 1000 ° C . The proposed sensor has applications in next-generation greener gas turbines for power production.

© 2009 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Remote Sensing and Sensors

Original Manuscript: February 24, 2009
Manuscript Accepted: March 17, 2009
Published: April 24, 2009

Mumtaz Sheikh and Nabeel A. Riza, "Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe," Opt. Lett. 34, 1402-1404 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.
  2. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.
  3. Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004). [CrossRef]
  4. G. Beheim, Electron. Lett. 22, 238 (1986). [CrossRef]
  5. L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003). [CrossRef]
  6. O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995). [CrossRef]
  7. G. L. DesAutels, P. Powers, C. Brewer, M. Walker, M. Burky, and G. Anderson, Appl. Opt. 47, 3773 (2008). [CrossRef] [PubMed]
  8. N. A. Riza and M. Sheikh, Opt. Lett. 33, 1129 (2008). [CrossRef] [PubMed]
  9. W.Martienssen and H.Warlimont, eds., Handbook of Condensed Matter and Materials Data, and (Springer, 2005), Vol. XVII. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited