OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 9 — May. 1, 2009
  • pp: 1468–1470

Modal-based tomographic imaging from far-zone observations: multifrequency case

Ersel Karbeyaz and Carey M. Rappaport  »View Author Affiliations


Optics Letters, Vol. 34, Issue 9, pp. 1468-1470 (2009)
http://dx.doi.org/10.1364/OL.34.001468


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A recently developed optical diffraction tomography technique [ J. Opt. Soc. Am. A 26, 19 (2009) ] is modified to handle the special case of a dispersionless scatterer, where the relative permittivity contrast of the object is independent of the operation frequency, allowing the fusion of multifrequency data. The modified technique is illustrated with a simulation scenario involving a dispersionless and lossless object being probed with plane waves of distinct incidence angles and frequencies. Superiority of the fusion of multifrequency data over the use of single-frequency data is demonstrated.

© 2009 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(110.6960) Imaging systems : Tomography
(290.3200) Scattering : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: February 5, 2009
Revised Manuscript: April 6, 2009
Manuscript Accepted: April 13, 2009
Published: April 30, 2009

Citation
Ersel Karbeyaz and Carey M. Rappaport, "Modal-based tomographic imaging from far-zone observations: multifrequency case," Opt. Lett. 34, 1468-1470 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Karbeyaz and C. M. Rappaport, J. Opt. Soc. Am. A 26, 19 (2009). [CrossRef]
  2. T. Chu and K. Lee, IEEE Trans. Antennas Propag. 37, 515 (1989). [CrossRef]
  3. A. G. Tijhuis, K. Belkebir, A. C. S. Litman, and B. P. de Hon, Inverse Probl. 17, 1635 (2001). [CrossRef]
  4. M. L. Dennison and A. J. Devaney, Inverse Probl. 20, 1307 (2004). [CrossRef]
  5. A. J. Devaney, Ultrason. Imaging 4, 336 (1982). [CrossRef] [PubMed]
  6. A. J. Devaney and M. Dennison, Inverse Probl. 19, 855 (2003). [CrossRef]
  7. A. K. Dunn, “Light scattering properties of cells,” Ph.D dissertation (University of Texas at Austin, 1997).
  8. R. G. Driggers, Encyclopedia of Optical Engineering (CRC Press, 2003), Vol. 2.
  9. G. Hale and M. Querry, Appl. Opt. 12, 555 (1973). [CrossRef] [PubMed]
  10. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, Phys. Med. Biol. 51, 1479 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited