OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 11 — Jun. 1, 2010
  • pp: 1771–1773

Soliton explosion control by higher-order effects

Sofia C. V. Latas and Mário F. S. Ferreira  »View Author Affiliations

Optics Letters, Vol. 35, Issue 11, pp. 1771-1773 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically study the impact of self-frequency shift, self-steepening, and third-order dispersion on the erupting soliton solutions of the quintic complex Ginzburg–Landau equation. We find that the pulse explosions can be completely eliminated if these higher-order effects are properly conjugated two by two. In particular, we observe that positive third-order dispersion can compensate the self-frequency shift effect, whereas negative third-order dispersion can compensate the self-steepening effect. A stable propagation of a fixed-shape pulse is found under the simultaneous presence of the three higher-order effects.

© 2010 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: February 17, 2010
Revised Manuscript: April 10, 2010
Manuscript Accepted: April 16, 2010
Published: May 19, 2010

Sofia C. V. Latas and Mário F. S. Ferreira, "Soliton explosion control by higher-order effects," Opt. Lett. 35, 1771-1773 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  2. H. Haus, J. Appl. Phys. 46, 3049 (1975). [CrossRef]
  3. P. A. Belanger, J. Opt. Soc. Am. B 8, 2077 (1991). [CrossRef]
  4. C. O. Weiss, Phys. Rep. 219, 311 (1992). [CrossRef]
  5. J. D. Moores, Opt. Commun. 96, 65 (1993). [CrossRef]
  6. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992). [CrossRef] [PubMed]
  7. W. J. Firth and A. J. Scroggie, Phys. Rev. Lett. 76, 1623 (1996). [CrossRef] [PubMed]
  8. P. S. Jian, W. E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, and F. Lederer, Opt. Lett. 24, 400 (1999). [CrossRef]
  9. J. M. Soto-Crespo, N. N. Akhmediev, and A. Ankiewicz, Phys. Rev. Lett. 852937 (2000). [CrossRef] [PubMed]
  10. N. N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys. Rev. E 63, 056602 (2001). [CrossRef]
  11. S. T. Cundiff, J. M. Soto-Crespo, and N. N. Akhmediev, Phys. Rev. Lett. 88, 073903 (2002). [CrossRef] [PubMed]
  12. J. M. Soto-Crespo and N. N. Akhmediev, Math. Comput. Simul. 69, 526 (2005). [CrossRef]
  13. N. N. Akhmediev and J. M. Soto-Crespo, Phys. Rev. E 70, 036613 (2004). [CrossRef]
  14. N. N. Akhmediev and J. M. Soto-Crespo, Phys. Lett. A 317, 287 (2003). [CrossRef]
  15. H. P. Tian, Z. H. Li, J. P. Tian, G. S. Zhou, and J. Zi, Appl. Phys. B 78, 199 (2004). [CrossRef]
  16. L. Song, L. Li, Z. Li, and G. Zhou, Opt. Commun. 249, 301 (2005). [CrossRef]
  17. E. N. Tsoy and M. C. Sterke, J. Opt. Soc. Am. B 23, 2425 (2006). [CrossRef]
  18. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).
  19. F. If, P. Berg, P. L. Christiansen, and O. Skovgaard, J. Comput. Phys. 72, 501 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited