OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 11 — Jun. 1, 2010
  • pp: 1850–1852

In-fiber frequency-domain measurement of ultrashort second-order correlations of incoherent light

Victor Torres-Company, Carlos R. Fernández-Pousa, and Juan P. Torres  »View Author Affiliations

Optics Letters, Vol. 35, Issue 11, pp. 1850-1852 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The second-order correlation function of incoherent light, which is usually measured in the time domain, can be alternatively measured in the frequency domain. Here, we use an all-optical technique in a highly nonlinear fiber for measuring the full spectrum of the fluctuations of the photocurrent (rf spectrum) generated by broadband radiation with different spectral coherence properties. Our experiments reveal that the rf spectrum of a light signal depends strongly on its spectral coherence properties. From a practical perspective, this ultrafast technique constitutes an alternative for measuring the intensity correlations of spectrally incoherent radiation.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.5260) Coherence and statistical optics : Photon counting
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 19, 2010
Revised Manuscript: April 11, 2010
Manuscript Accepted: May 1, 2010
Published: May 27, 2010

Victor Torres-Company, Carlos R. Fernández-Pousa, and Juan P. Torres, "In-fiber frequency-domain measurement of ultrashort second-order correlations of incoherent light," Opt. Lett. 35, 1850-1852 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1996).
  2. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, Nature 423, 731 (2003). [CrossRef] [PubMed]
  3. M. C. Teich, R. L. Abrams, and W. B. Ganrund, Opt. Commun. 2, 206 (1970). [CrossRef]
  4. M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 142, 25 (1966). [CrossRef]
  5. R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002). [CrossRef] [PubMed]
  6. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nature Phys. 5, 267 (2009). [CrossRef]
  7. C. Freed and H. A. Haus, Phys. Rev. 141, 287 (1966). [CrossRef]
  8. C. R. Fernández-Pousa, J. Opt. Soc. Am. A 26, 993 (2009). [CrossRef]
  9. C. Dorrer and D. N. Maywar, Electron. Lett. 39, 1004 (2003). [CrossRef]
  10. M. D. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. P. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nature Photon. 3, 139 (2009). [CrossRef]
  11. L. J. Wang, B. E. Magill, and L. Mandel, J. Opt. Soc. Am. B 6, 964 (1989). [CrossRef]
  12. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, Nature Photon. 3, 95 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited