Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved interferometric tracking of trapped particles using two frequency-detuned beams

Not Accessible

Your library or personal account may give you access

Abstract

For most optical tweezer applications, precise and reliable tracking of the trapped particle is an important requirement. Backfocal-plane interferometry is the fastest and most accurate tracking technique if the particle displacements are limited to half of the focal width. Especially for positive axial displacements, the nonlinear detector response can lead to incorrect tracking results. Here we show how the linear detection range around the trap center can be extended by a factor of 2 to 4 in the axial direction using a second frequency-detuned tracking focus that is generated by the same laser as the optical trap. Additionally, we show how the noise in the axial signal can be decreased significantly using a second detector.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction

Dominic Ruh, Benjamin Tränkle, and Alexander Rohrbach
Opt. Express 19(22) 21627-21642 (2011)

Tuning the detection sensitivity: a model for axial backfocal plane interferometric tracking

Lars Friedrich and Alexander Rohrbach
Opt. Lett. 37(11) 2109-2111 (2012)

Interferometric 3D tracking of several particles in a scanning laser focus

Michael Speidel, Lars Friedrich, and Alexander Rohrbach
Opt. Express 17(2) 1003-1015 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved