OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 12 — Jun. 15, 2010
  • pp: 2109–2111

Effect of gain-dependent phase shift for tunable abrupt-tapered Mach–Zehnder interferometers

Nan-Kuang Chen and Zhi-Zheng Feng  »View Author Affiliations

Optics Letters, Vol. 35, Issue 12, pp. 2109-2111 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A differential gain-dependent phase shift between the core mode and the cladding mode can be all-optically tuned by a cw 975 nm pump light for Mach–Zehnder interferometers using two abrupt fiber tapers in a 1.2-cm-long highly Er/Yb codoped fiber. The highly doped fiber has large absorption and emission cross sections to efficiently introduce the phase shift when the inversion rate is changed by varying the pump power. The first abrupt taper converts part of core mode into the cladding mode, while the second abrupt taper recombines both modes to interfere after propagating for a length of a few millimeters.

© 2010 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2410) Fiber optics and optical communications : Fibers, erbium
(350.2460) Other areas of optics : Filters, interference
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 9, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 14, 2010
Published: June 14, 2010

Nan-Kuang Chen and Zhi-Zheng Feng, "Effect of gain-dependent phase shift for tunable abrupt-tapered Mach–Zehnder interferometers," Opt. Lett. 35, 2109-2111 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, Phys. Rev. A 64, 031801 (2001). [CrossRef]
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007). [CrossRef] [PubMed]
  3. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934(2008). [CrossRef] [PubMed]
  4. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, Opt. Lett. 34, 2297 (2009). [CrossRef] [PubMed]
  5. Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, and A. L. Ye, Appl. Phys. Lett. 85, 5102 (2004). [CrossRef]
  6. Z. Tian and S. S. H. Yam, IEEE Photonics Technol. Lett. 21, 161 (2009). [CrossRef]
  7. Z. Tian and S. S.-H. Yam, J. Lightwave Technol. 27, 2296(2009). [CrossRef]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  9. N. K. Chen, Z. Z. Feng, and S. K. Liaw, Laser Phys. Lett. 7, 363 (2010). [CrossRef]
  10. C. Thirstrup, Y. Shi, and B. Palsdottir, J. Lightwave Technol. 14, 732 (1996). [CrossRef]
  11. S. C. Fleming and T. J. Whitley, IEEE J. Quantum Electron. 32, 1113 (1996). [CrossRef]
  12. Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andres, Appl. Phys. Lett. 85, 2466 (2004). [CrossRef]
  13. K. T. Kim, K. H. Lee, E. S. Shin, H. S. Song, K. B. Hong, S. Hwangbo, and K. R. Sohn, Opt. Commun. 261, 51 (2006). [CrossRef]
  14. E. Pone, X. Daxhelet, and S. Lacroix, Opt. Express 12, 1036 (2004). [CrossRef] [PubMed]
  15. N. K. Chen, K. C. Hsu, S. K. Liaw, Y. Lai, and S. Chi, Opt. Lett. 33, 1666 (2008). [CrossRef] [PubMed]
  16. http://www.fibercore.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited