OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 13 — Jul. 1, 2010
  • pp: 2269–2271

Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom

Anant Agrawal, T. Joshua Pfefer, Naureen Gilani, and Rebekah Drezek  »View Author Affiliations

Optics Letters, Vol. 35, Issue 13, pp. 2269-2271 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel (to our knowledge) approach for measurement of the three-dimensional point spread function (PSF) of optical coherence tomography (OCT) systems using a nanoparticle-embedded phantom (NEP), toward development of standardized test methods for biophotonic imaging. The NEP comprises highly reflective plasmonic nanoparticles, homogeneously distributed in a transparent silicone matrix. OCT image volumes were analyzed to characterize PSFs in axial and lateral directions at a variety of locations in the NEP. Results indicate submicrometer agreement with conventional approaches to measure dimensions of the PSF. The NEP offers a robust approach for validating and comparing imaging performance of OCT devices.

© 2010 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.4850) Imaging systems : Optical transfer functions
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.4800) Other areas of optics : Optical standards and testing

ToC Category:
Imaging Systems

Original Manuscript: March 30, 2010
Manuscript Accepted: April 26, 2010
Published: June 29, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Anant Agrawal, T. Joshua Pfefer, Naureen Gilani, and Rebekah Drezek, "Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom," Opt. Lett. 35, 2269-2271 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 12, 051403(2007). [CrossRef] [PubMed]
  2. A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, Proc. SPIE 6870, 687005 (2008). [CrossRef]
  3. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, IEEE J. Sel. Top. Quantum Electron. 9, 227 (2003). [CrossRef]
  4. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, Opt. Lett. 28, 2064 (2003). [CrossRef] [PubMed]
  5. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Appl. Phys. Lett. 64, 1335 (1994). [CrossRef]
  6. M. J. Nasse, J. C. Woehl, and S. Huant, Appl Phys. Lett. 90, 031106 (2007). [CrossRef]
  7. C. Dong, K. Koenig, and P. So, J. Biomed. Opt. 8, 450(2003). [CrossRef] [PubMed]
  8. P. D. Wooliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, Appl. Opt. 49, 2014 (2010). [CrossRef]
  9. A. Agrawal, S. Huang, A. W. H. Lin, M. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, J. Biomed. Opt. 11, 041121 (2006). [CrossRef] [PubMed]
  10. J. C. Kah, T. H. Chow, B. K. Ng, S. G. Razul, M. Olivo, and C. J. Sheppard, Appl. Opt. 48, D96 (2009). [CrossRef] [PubMed]
  11. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, Phys. Rev. B 66, 155431 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited