OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 14 — Jul. 15, 2010
  • pp: 2385–2387

Mode localization and the Q-factor of a cylindrical microresonator

M. Sumetsky  »View Author Affiliations

Optics Letters, Vol. 35, Issue 14, pp. 2385-2387 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As opposed to the modes in an optical spherical/spheroidal microresonator, the whispering gallery modes in a long cylindrical microresonator are delocalized. Consequently, a circulating light beam that is evanescently coupled into the cylinder and experiences total internal reflection eventually radiates out along the cylinder axis. However, the self-interference of such a beam can produce a resonant mode that is strongly localized along the axial direction. Specifically, the mode characteristic width is ( α β ) 1 / 2 , where α and β are the attenuation and propagation constants of the cylinder material. The Q-factor of this mode can be almost as large as the Q-factor of modes in a spheroidal microresonator with the same α divided by 2.542.

© 2010 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(230.3990) Optical devices : Micro-optical devices
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 11, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: June 19, 2010
Published: July 8, 2010

M. Sumetsky, "Mode localization and the Q-factor of a cylindrical microresonator," Opt. Lett. 35, 2385-2387 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, Nature 424, 839 (2003). [CrossRef] [PubMed]
  2. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006). [CrossRef]
  3. V. S. Ilchenko, M. L. Gorodetsky, X. S. Yao, and L. Maleki, Opt. Lett. 26, 256 (2001). [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, Nature 421, 925 (2003). [CrossRef] [PubMed]
  5. M. Sumetsky, Opt. Lett. 29, 8 (2004). [CrossRef] [PubMed]
  6. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, Opt. Express 17, 11916 (2009). [CrossRef]
  7. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009). [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997). [CrossRef]
  9. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000). [CrossRef]
  10. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photonics Technol. Lett. 12, 182 (2000). [CrossRef]
  11. M. Sumetsky and Y. Dulashko, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2006), paper OTuL6.
  12. I. M. White, H. Oveys, and X. Fan, Opt. Lett. 31, 1319 (2006). [CrossRef] [PubMed]
  13. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, Proc. SPIE 6452, 64520M (2007). [CrossRef]
  14. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Lett. 34, 1039 (2009). [CrossRef] [PubMed]
  15. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 898 (2010). [CrossRef] [PubMed]
  16. A. W. Poon, R. K. Chang, and J. A. Lock, Opt. Lett. 23, 1105 (1998). [CrossRef]
  17. J. A. Lock, J. Opt. Soc. Am. A 14, 653 (1997). [CrossRef]
  18. H. G. L. Schwefel, A. D. Stone, and H. E. Tureci, J. Opt. Soc. Am. B 22, 2295 (2005). [CrossRef]
  19. H. Zhang and Y. Han, J. Opt. Soc. Am. B 25, 131 (2008). [CrossRef]
  20. M. Sumetsky, Opt. Express 18, 2413 (2010). [CrossRef] [PubMed]
  21. O. Schwelb, J. Lightwave Technol. 22, 1380 (2004). [CrossRef]
  22. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, J. Lightwave Technol. 5, 16 (1987). [CrossRef]
  23. The difference between a plain mirror resonator and a cylindrical resonator considered here is that the amplitude of a Gaussian beam propagating in three dimensions between two plain mirrors decreases with reflection number N as 1/N. In a cylinder, a Gaussian beam is not expanding in the radial direction and its amplitude decreases much slower as 1/N. For this reason, in a cylinder, the sum of the interfering components has a much stronger divergence.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited