OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 14 — Jul. 15, 2010
  • pp: 2448–2450

Bowtie-shaped nanoaperture: a modal study

I. A. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. W. Burr, and F. I. Baida  »View Author Affiliations

Optics Letters, Vol. 35, Issue 14, pp. 2448-2450 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the N-order finite-difference time-domain (FDTD) method, we show that optical resonances of the bowtie nanoaperture (BNA) are due to the combination of a guided mode inside the aperture and Fabry–Perot modes along the metal thickness. The resonance of lower energy, which leads to the well-known light confinement in the gap zone, occurs at the cutoff wavelength of the fundamental guided mode. No plasmon resonance is directly involved in the generation of the light hot spot. We also define a straightforward relationship between the resonance wavelengths of the BNA and its geometrical parameters. This brings a simple tool for the optimization of the BNA design.

© 2010 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

Original Manuscript: March 25, 2010
Manuscript Accepted: May 23, 2010
Published: July 13, 2010

I. A. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. W. Burr, and F. I. Baida, "Bowtie-shaped nanoaperture: a modal study," Opt. Lett. 35, 2448-2450 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkeland, and V. Sandogdhar, Phys. Rev. Lett. 95, 200801(2005). [CrossRef] [PubMed]
  2. D. P. Fromm, A. Sundaramurthy, P. J. Schuk, G. Kino, and W. E. Moerner, Nano Lett. 4, 957 (2004). [CrossRef]
  3. K. Sendur and W. Challener, J. Microsc. 210, 279 (2003). [CrossRef] [PubMed]
  4. E. X. Jin and X. Xu, Appl. Phys. Lett. 86, 111106 (2005). [CrossRef]
  5. E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006). [CrossRef]
  6. L. Wang and X. Xu, J. Microsc. 229, 483 (2008). [CrossRef] [PubMed]
  7. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, Opt. Express 18, 4961 (2010). [CrossRef] [PubMed]
  8. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, Opt. Express 16, 7756 (2008). [CrossRef] [PubMed]
  9. F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, Appl. Phys. B 79, 1 (2004). [CrossRef]
  10. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited