OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 15 — Aug. 1, 2010
  • pp: 2636–2638

Improving weak-signal identification via predetection background suppression by a pixel-level, surface-wave enabled dark-field aperture

Guoan Zheng and Changhuei Yang  »View Author Affiliations

Optics Letters, Vol. 35, Issue 15, pp. 2636-2638 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the successful implementation of a surface-wave enabled dark-field aperture (SWEDA) directly on a complementary metal-oxide semiconductor sensor pixel ( 2.2 μ m ). This SWEDA pixel allows predetection cancellation of a uniform coherent background. We show that the signal-to-noise ratio (SNR) of the SWEDA pixel is better than that of a single undressed pixel over a significant range of signal-to-background ratio (SBR). For a small SBR value ( SBR = 0.001 , background intensity = 3.96 W / m 2 , integration time = 5 ms ), we further demonstrate that a SWEDA pixel can detect a weak localized signal buried in a high background, while conventional postdetection background subtraction cannot (improved SNR = 2.2 versus SNR = 0.26 ).

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: April 13, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: July 4, 2010
Published: July 29, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Guoan Zheng and Changhuei Yang, "Improving weak-signal identification via predetection background suppression by a pixel-level, surface-wave enabled dark-field aperture," Opt. Lett. 35, 2636-2638 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Narayanaswamy and O. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, 2004).
  2. G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010). [CrossRef]
  3. R. Bhat, N. Panoiu, S. Brueck, and R. Osgood, Opt. Express 16, 4588 (2008). [CrossRef] [PubMed]
  4. G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010). [CrossRef] [PubMed]
  5. P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006). [CrossRef]
  6. X. Shi, L. Hesselink, and R. Thornton, Opt. Lett. 28, 1320 (2003). [CrossRef] [PubMed]
  7. E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).
  8. X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006). [CrossRef] [PubMed]
  9. G. Zheng, Y. M. Wang, and C. Yang, Opt. Express 18, 16499 (2010). [CrossRef] [PubMed]
  10. N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited