OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 16 — Aug. 15, 2010
  • pp: 2684–2686

On the theory of the modulation instability in optical fiber amplifiers

Sergei K. Turitsyn, Alexander M. Rubenchik, and Michail P. Fedoruk  »View Author Affiliations

Optics Letters, Vol. 35, Issue 16, pp. 2684-2686 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined.

© 2010 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4780) Lasers and laser optics : Optical resonators
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: May 5, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: June 23, 2010
Published: August 5, 2010

Sergei K. Turitsyn, Alexander M. Rubenchik, and Michail P. Fedoruk, "On the theory of the modulation instability in optical fiber amplifiers," Opt. Lett. 35, 2684-2686 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. E. Zakharov and L. A. Ostrovsky, Physica D (Amsterdam) 238, 540 (2009). [CrossRef]
  2. V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).
  3. G. P. Agrawal, IEEE Photonics Technol. Lett. 4, 562 (1992). [CrossRef]
  4. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986). [CrossRef]
  5. P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, Opt. Lett. 15, 1365 (1990). [CrossRef] [PubMed]
  6. M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989). [CrossRef]
  7. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, Opt. Lett. 27, 915 (2002). [CrossRef]
  8. Y. Gong, P. Shum, D. Tang, C. Lu, and X. Guo, Opt. Express 11, 2480 (2003). [CrossRef] [PubMed]
  9. A. M. Rubenchik, S. K. Turitsyn, and M. P. Fedoruk, Opt. Express 18, 1380 (2010). [CrossRef] [PubMed]
  10. N. N. Rozanov and V. A. Smirnov, Sov. J. Quantum Electron. 10, 232 (1980). [CrossRef]
  11. M. Karlsson, J. Opt. Soc. Am. B 12, 2071 (1995).
  12. E. L. Ince, Ordinary Differential Equations (Dover, 1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited