OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 16 — Aug. 15, 2010
  • pp: 2789–2791

Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging

Pontus Svenmarker, Can T. Xu, and Stefan Andersson-Engels  »View Author Affiliations

Optics Letters, Vol. 35, Issue 16, pp. 2789-2791 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence diffuse imaging (FDI) suffers from limited spatial resolution. In this Letter, we report a scanning imaging approach to increase the resolution of FDI using nonlinear fluorophores. The resolution of a linear fluorophore was compared with nonlinear upconverting nanoparticles ( Na YF 4 : Yb 3 + / Tm 3 + ) in a tissue phantom. A resolution improvement of a factor of 1.3 was found experimentally. Simulations suggested a maximum resolution improvement of a factor of 1.45. Usage of nonlinear fluorophores is a promising method for increasing the spatial resolution in FDI.

© 2010 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.7220) Nonlinear optics : Upconversion
(350.5730) Other areas of optics : Resolution
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

Original Manuscript: May 6, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 15, 2010
Published: August 13, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Pontus Svenmarker, Can T. Xu, and Stefan Andersson-Engels, "Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging," Opt. Lett. 35, 2789-2791 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, Nat. Biotechnol. 23, 313 (2005). [CrossRef] [PubMed]
  3. A. H. Hielscher, Curr. Opin. Biotechnol. 16, 79 (2005). [CrossRef] [PubMed]
  4. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, Opt. Lett. 15, 1179 (1990). [CrossRef] [PubMed]
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, Science 253, 769 (1991). [CrossRef] [PubMed]
  6. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, Proc. Natl. Acad. Sci. USA 105, 19126 (2008). [CrossRef] [PubMed]
  7. B. W. Pogue, S. L. Gibbs, B. Chen, and M. Savellano, Technol. Cancer. Res. Treat. 3, 15 (2004). [PubMed]
  8. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, Adv. Mater. 16, 2102 (2004). [CrossRef]
  9. G. S. Yi and G. M. Chow, Chem. Mater. 19, 341 (2007). [CrossRef]
  10. C. Xu and W. W. Webb, J. Opt. Soc. Am. B 13, 481(1996). [CrossRef]
  11. F. Auzel, Chem. Rev. 104, 139 (2004). [CrossRef] [PubMed]
  12. C. T. Xu, N. Svensson, J. Axelsson, P. Svenmarker, G. Somesfalean, G. Chen, H. Liang, H. Liu, Z. Zhang, and S. Andersson-Engels, Appl. Phys. Lett. 93, 171103(2008). [CrossRef]
  13. C. T. Xu, J. Axelsson, and S. Andersson-Engels, Appl. Phys. Lett. 94, 251107 (2009). [CrossRef]
  14. E. Alerstam, T. Svensson, and S. Andersson-Engels, J. Biomed. Opt. 13, 060504 (2008). [CrossRef]
  15. E. Alerstam, S. Andersson-Engels, and T. Svensson, Opt. Express 16, 10440 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited