OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 17 — Sep. 1, 2010
  • pp: 2837–2839

Hollow core fiber with an octave spanning bandgap

Francesco Poletti  »View Author Affiliations

Optics Letters, Vol. 35, Issue 17, pp. 2837-2839 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We thoroughly compare the out-of-plane bandgaps generated by three realistic two-dimensional lattices: a triangular and a square arrangement of holes and a triangular arrangement of rods. We demonstrate that, for any given hole-diameter-to-pitch ratio d / Λ , the triangular arrangement of interconnected resonators generates the widest possible bandgap along the air line, and we propose a physical interpretation explaining these results. The design of a hollow core photonic bandgap fiber based on such a lattice and able to transmit light with sub-decibel-per-meter losses over an octave of frequencies is presented for the first time, to the best of our knowledge.

© 2010 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.5293) Materials : Photonic bandgap materials
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 23, 2010
Manuscript Accepted: July 14, 2010
Published: August 17, 2010

Francesco Poletti, "Hollow core fiber with an octave spanning bandgap," Opt. Lett. 35, 2837-2839 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005). [CrossRef] [PubMed]
  2. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003). [CrossRef] [PubMed]
  3. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009). [CrossRef]
  4. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009). [CrossRef] [PubMed]
  5. F. Poletti and D. J. Richardson, Opt. Lett. 32, 2282 (2007). [CrossRef] [PubMed]
  6. B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.
  7. T. A. Birks, G. J. Pearce, and D. M. Bird, Opt. Express 14, 9483 (2006). [CrossRef] [PubMed]
  8. M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005). [CrossRef] [PubMed]
  9. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  10. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, Opt. Express 14, 7974(2006). [CrossRef] [PubMed]
  11. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, Opt. Express 16, 4337 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited