OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 2 — Jan. 15, 2010
  • pp: 157–159

Distinguishing between deterministic and stochastic pulse broadening

Minna Surakka, Ari T. Friberg, Jari Turunen, and Pasi Vahimaa  »View Author Affiliations

Optics Letters, Vol. 35, Issue 2, pp. 157-159 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two mechanisms can cause similar broadening of pulses in a pulse train: variable temporal/spectral phase in a train of identical pulses (a deterministic mechanism) and partial correlations between different frequency components of the pulses (a stochastic mechanism). We discuss methods to distinguish between these two fundamentally different mechanisms. We show that their roles can be separated, at least for an important class of fields known as Gaussian Schell-model pulses, using time-resolved intensity measurements of pulses passing through Michelson’s interferometer.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(320.1590) Ultrafast optics : Chirping
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

Original Manuscript: October 6, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 3, 2009
Published: January 13, 2010

Minna Surakka, Ari T. Friberg, Jari Turunen, and Pasi Vahimaa, "Distinguishing between deterministic and stochastic pulse broadening," Opt. Lett. 35, 157-159 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  2. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002). [CrossRef]
  3. X. Gu, L. Xu, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 27, 1174 (2002). [CrossRef]
  4. J. W. Nicholson and M. F. Yan, Opt. Express 12, 679 (2004). [CrossRef] [PubMed]
  5. V. Torres-Company, H. Lajunen, and A. T. Friberg, J. Opt. Soc. Am. B 24, 1441 (2007). [CrossRef]
  6. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002). [CrossRef]
  7. H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, Opt. Commun. 255, 12 (2005). [CrossRef]
  8. M. Bertolotti, L. Sereda, and A. Ferrari, Pure Appl. Opt. 6, 153 (1997). [CrossRef]
  9. F. Boitier, A. Gorard, E. Rosenthal, and C. Fabre, Nat. Phys. 5, 267 (2009). [CrossRef]
  10. Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003). [CrossRef]
  11. P. Vahimaa and J. Turunen, Opt. Express 14, 5007 (2006). [CrossRef] [PubMed]
  12. We replace the lower integration limits (zero) with −∞ in Eq. (3) in carrying out the integrations, thus assuming that Ω⪡ω0.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited