OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 2 — Jan. 15, 2010
  • pp: 190–192

Dependence of dispersive and birefringence properties of silicon nanowires on waveguide dimensions

Brian A. Daniel and Govind P. Agrawal  »View Author Affiliations

Optics Letters, Vol. 35, Issue 2, pp. 190-192 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study numerically the dependence of dispersive and birefringence properties of silicon nanowires on waveguide dimensions and show that they have a strong geometrical dependence when nanowire dimensions become comparable to the wavelength of light inside the device. We develop a graphical method for engineering two or more dispersion parameters simultaneously and use it to demonstrate the possibility of fabricating silicon nanowires with flattened dispersion curves over a wide spectral range with normal or anomalous nominal values. We quantify polarization-mode dispersion through the differential group delay and show that it can acquire large values for properly designed nanowires. Our analysis should help in designing silicon-based photonic integrated circuits.

© 2010 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(230.7370) Optical devices : Waveguides
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Optical Devices

Original Manuscript: October 2, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 15, 2009
Published: January 13, 2010

Brian A. Daniel and Govind P. Agrawal, "Dependence of dispersive and birefringence properties of silicon nanowires on waveguide dimensions," Opt. Lett. 35, 190-192 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Marconi, S. A. Cerqueira, Jr., J. Robinson, N. Sherwood-Droz, Y. Okawachi, H. Hernandez-Figueroa, M. Lipson, A. Gaeta, and H. Fragnito, Opt. Commun. 282, 849 (2009). [CrossRef]
  2. B. Lee, X. Chen, A. Biberman, X. Liu, I. Hsieh, C. Chou, J. Dadap, F. Xia, W. Green, L. Sekaric, Y. Vlasov, R. Osgood, Jr., and K. Bergman, IEEE Photon. Technol. Lett. 20, 398 (2008). [CrossRef]
  3. L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004). [CrossRef] [PubMed]
  4. L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 31, 1295 (2006). [CrossRef] [PubMed]
  5. A. Turner, C. Manolatou, B. Schmidt, M. Lipson, M. Foster, J. Sharping, and A. Gaeta, Opt. Express 14, 4357 (2006). [CrossRef] [PubMed]
  6. J. Jágerská, N. Le Thomas, R. Houdré, J. Bolten, C. Moormann, T. Wahlbrink, J. Čtyroký, M. Waldow, and M. Först, Opt. Lett. 32, 2723 (2007). [CrossRef] [PubMed]
  7. D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D. Xu, S. Janz, and D. Christodoulides, Opt. Eng. 46, 104602 (2007). [CrossRef]
  8. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, Opt. Express 14, 3853 (2006). [CrossRef] [PubMed]
  9. M. J. Weber, Handbook of Optical Materials (CRC, 2003), p. 239.
  10. P. Lüsse, P. Stuwe, J. Schüle, and H. Unger, J. Lightwave Technol. 12, 487 (1994). [CrossRef]
  11. L. Christen, Y. K. Lizé, S. Nuccio, L. Paraschis, and A. E. Willner, IEEE Photon. Technol. Lett. 20, 1166 (2008). [CrossRef]
  12. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Express 15, 12949 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited