OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 2 — Jan. 15, 2010
  • pp: 211–213

Emission of 1.38 μ m and gain properties from Ho 3 + -doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers

Bo Zhou, Hai Lin, Dianlai Yang, and Edwin Yue-Bun Pun  »View Author Affiliations


Optics Letters, Vol. 35, Issue 2, pp. 211-213 (2010)
http://dx.doi.org/10.1364/OL.35.000211


View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient emission at 1.38 μ m wavelength from holmium ( Ho 3 + ) -doped low-phonon-energy gallate bismuth lead (GBL) oxide glasses, owing to the Ho 3 + : ( S 2 5 , F 4 5 ) I 5 5 transition, was observed, and the stimulated emission cross section was calculated to be 2.4 × 10 21 cm 2 . Population inversions between the ( S 2 5 , F 4 5 ) and I 5 5 levels have been achieved, and a broad gain bandwidth from 1350 to 1450 nm was obtained. The large product of emission cross section and measured lifetime also support this characteristic. The results indicate that a Ho 3 + -doped GBL glass system is a promising candidate for the development of E-band ( 1360 1460 nm ) fiber-optic amplifiers.

© 2010 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 21, 2009
Revised Manuscript: November 15, 2009
Manuscript Accepted: December 1, 2009
Published: January 14, 2010

Citation
Bo Zhou, Hai Lin, Dianlai Yang, and Edwin Yue-Bun Pun, "Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers," Opt. Lett. 35, 211-213 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-2-211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, Nature 404, 262 (2000). [CrossRef] [PubMed]
  2. S. Kasap, in The Optics Encyclopedia, T.Brown, K.Creath, H.Kogelnik, M.A.Kriss, J.Schmit, and M.J.Weber, eds. (Wiley-VCH, 2004), Vol. 4, pp. 2237-2284.
  3. See, for example, Rare-Earth-Doped Fiber Lasers and Amplifiers, M.J. F.Digonnet, ed. (Marcel Dekker, 2001), and references therein. [CrossRef]
  4. Y. G. Choi, B. J. Park, and K. H. Kim, Chin. Phys. Lasers 354, 69 (2002). [CrossRef]
  5. N. M. Sangeetha and F. C. J. M. van Veggel, J. Phys. Chem. C 113, 14702 (2009). [CrossRef]
  6. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, Appl. Phys. Lett. 87, 171911 (2005). [CrossRef]
  7. B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, J. Appl. Phys. 106, 103105 (2009). [CrossRef]
  8. X. Wang, H. Lin, D. Yang, L. Lin, and E. Y. B. Pun, J. Appl. Phys. 101, 113535 (2007). [CrossRef]
  9. T. H. Lee and J. Heo, Phys. Rev. B 73, 144201 (2006). [CrossRef]
  10. H. Yamauchi and Y. Ohishi, Opt. Mater. 27, 679 (2005). [CrossRef]
  11. H. Ebendor-Heidepriem, I. Szab, and Z. E. Rasztovits, Opt. Mater. 14, 127 (2000). [CrossRef]
  12. K. Ohta, H. Saito, and M. Obara, J. Appl. Phys. 73, 3149 (1993). [CrossRef]
  13. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Opt. Lett. 21, 1594 (1996). [CrossRef] [PubMed]
  14. L. Wetenkamp, G. F. West, and H. Tobben, J. Non-Cryst. Solids 140, 35 (1992). [CrossRef]
  15. D. E. McCumber, Phys. Rev. 134, A954 (1964). [CrossRef]
  16. J. Ganem, J. Crawford, and P. Schmidt, Phys. Rev. B 66, 245101 (2002). [CrossRef]
  17. T. H. Lee and J. Heo, J. Appl. Phys. 98, 113510 (2005). [CrossRef]
  18. J. H. Schon, C. Kloc, A. Dodabalapur, and B. Batlogg, Science 289, 599 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited