OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3318–3320

Strong enhancement of magnetic dipole emission in a multilevel electronic system

Sinan Karaveli and Rashid Zia  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3318-3320 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Purcell effect is commonly used to increase light emission by enhancing the radiative decay of electric dipole transitions. In this Letter, we demonstrate that the opposite effect, namely, the inhibition of electric dipole transitions, can be used to strongly enhance light emission via magnetic dipole transitions. Specifically, by exploiting the differing symmetries of competitive electric and magnetic dipole transitions in trivalent europium, we demonstrate a fourfold enhancement of the far-field emission from the D 0 5 F 1 7 magnetic dipole transition in trivalent europium. We show that this strong enhancement is well predicted by a three-level model that couples the individual Purcell enhancement factors of competitive transitions from the same excited state.

© 2010 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.2140) Spectroscopy : Emission
(310.6188) Thin films : Spectral properties

ToC Category:

Original Manuscript: June 24, 2010
Revised Manuscript: August 17, 2010
Manuscript Accepted: August 26, 2010
Published: October 8, 2010

Sinan Karaveli and Rashid Zia, "Strong enhancement of magnetic dipole emission in a multilevel electronic system," Opt. Lett. 35, 3318-3320 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, Phys. Rev. 69, 681 (1946). [CrossRef]
  2. K. J. Vahala, Nature 424, 839 (2003). [CrossRef] [PubMed]
  3. V. M. Shalaev, Nat. Photon. 1, 41 (2007). [CrossRef]
  4. Q. Thommen and P. Mandel, Opt. Lett. 31, 1803 (2006). [CrossRef] [PubMed]
  5. N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008). [CrossRef]
  6. N. Noginova, Y. Barnakov, H. Li, and M. Noginov, Opt. Express 17, 10767 (2009). [CrossRef] [PubMed]
  7. E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995). [CrossRef] [PubMed]
  8. Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, Opt. Express 17, 20642 (2009). [CrossRef] [PubMed]
  9. S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941). [CrossRef]
  10. K. H. Drexhage, Prog. Opt. 12, 162 (1974).
  11. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978). [CrossRef]
  12. R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980). [CrossRef]
  13. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited