OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3351–3353

Thermal nonlinear effects in hybrid silica/polymer microdisks

Carsten Schmidt, Arkadi Chipouline, Thomas Käsebier, Ernst-Bernhard Kley, Andreas Tünnermann, and Thomas Pertsch  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3351-3353 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear and thermal nonlinear spectral responses of silica and hybrid silica/polymer microdisk resonators are investigated. Both types of resonators can be fabricated using the same technological procedure with only slight modification. An extra polymer layer results in opposite sign of the nonlinear thermal optical response of the hybrid microdisks compared to the pure silica ones, which can be explained by the different thermorefractive coefficients of silica and polymer. A full compensation of eigen frequency shift, caused by thermal nonlinearity, has been demonstrated experimentally.

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects
(190.1450) Nonlinear optics : Bistability
(230.4000) Optical devices : Microstructure fabrication
(230.4320) Optical devices : Nonlinear optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 2, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 19, 2010
Published: October 8, 2010

Carsten Schmidt, Arkadi Chipouline, Thomas Käsebier, Ernst-Bernhard Kley, Andreas Tünnermann, and Thomas Pertsch, "Thermal nonlinear effects in hybrid silica/polymer microdisks," Opt. Lett. 35, 3351-3353 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, Nature 424, 839 (2003). [CrossRef] [PubMed]
  2. D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003). [CrossRef] [PubMed]
  3. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004). [CrossRef] [PubMed]
  4. T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003). [CrossRef]
  5. M. Borselli, T. Johnson, and O. Painter, Opt. Express 13, 1515 (2005). [CrossRef] [PubMed]
  6. V. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004). [CrossRef] [PubMed]
  7. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 17305 (2007). [CrossRef] [PubMed]
  8. L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008). [CrossRef]
  9. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009). [CrossRef]
  10. A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999). [CrossRef]
  11. M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007). [CrossRef]
  12. J. Knight, G. Cheung, F. Jacques, and T. Birks, Opt. Lett. 22, 1129 (1997). [CrossRef] [PubMed]
  13. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008). [CrossRef] [PubMed]
  14. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited