OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3501–3503

Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence

Kyujung Kim, Youngjin Oh, Wonju Lee, and Donghyun Kim  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3501-3503 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we explore plasmonics-based spatially activated light microscopy (PSALM) for sub-diffraction-limited imaging of biomolecules. PSALM is based on the spatially switched activation of local amplified electromagnetic hot spots under multiple light incidence conditions. The hot spots are associated with surface plasmons that are excited and localized by surface nanostructures. The feasibility of the concept was demonstrated by imaging fluorescent nanobeads on a two-dimensional gold nanograting of a 100-nm-wide grating ridge, the size of which is the measure of the imaging resolution. The result confirms the performance of PSALM for imaging nanobeads at a resolution below the conventional diffraction limit.

© 2010 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: June 22, 2010
Revised Manuscript: August 8, 2010
Manuscript Accepted: August 31, 2010
Published: October 14, 2010

Kyujung Kim, Youngjin Oh, Wonju Lee, and Donghyun Kim, "Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence," Opt. Lett. 35, 3501-3503 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell, Science 316, 1153 (2007). [CrossRef] [PubMed]
  2. M. G. L. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081(2005). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006). [CrossRef] [PubMed]
  4. T. J. Gould, V. V. Verkhusha, and S. T. Hess, Nat. Protocols 4, 291 (2009). [CrossRef]
  5. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793(2006). [CrossRef] [PubMed]
  6. H. Yokota, K. Saito, and T. Yanagida, Phys. Rev. Lett. 80, 4606 (1998). [CrossRef]
  7. T. Liebermann and W. Knoll, Colloids Surf. A 171, 115(2000). [CrossRef]
  8. F. Yu, B. Persson, S. Löfås, and W. Knoll, J. Am. Chem. Soc. 126, 8902 (2004). [CrossRef] [PubMed]
  9. K. Tawa and K. Morigaki, Biophys. J. 89, 2750 (2005). [CrossRef] [PubMed]
  10. E. Fort and S. Grésillon, J. Phys. D 41, 013001 (2008). [CrossRef]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Nano Lett. 4, 957 (2004). [CrossRef]
  12. P. Andrew and W. L. Barnes, Phys. Rev. B 64, 125405(2001). [CrossRef]
  13. K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, Nanotechnol. 20, 015202 (2009). [CrossRef]
  14. K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, Small 6, 1293 (2010). [CrossRef] [PubMed]
  15. K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, Opt. Lett. 34, 3905 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited