OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3526–3528

Fringe-pattern denoising based on discrete topological analysis

Yanhua Li, Shiliang Qu, Xiangjun Chen, and Zhiyong Luo  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3526-3528 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an effective way to solve the denoising problem of fringe patterns in optics interferometry. The proposed method is based on the topological analysis of an appropriate cost function. To overcome the blurring drawback of the linear diffusion approach, the linear diffusion coefficient at each edge is perturbed successively. The total variation of a discrete cost function can be taken as an indicator function to pick out the most suitable edges of pixels at which the diffusion coefficients are to be perturbed. Then, a filtered image can be obtained by using selected diffusion coefficients associated to the edges. We demonstrate the performance of the proposed method via application to numerically simulated and experimentally obtained fringe patterns.

© 2010 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

Original Manuscript: July 20, 2010
Revised Manuscript: September 16, 2010
Manuscript Accepted: September 20, 2010
Published: October 15, 2010

Yanhua Li, Shiliang Qu, Xiangjun Chen, and Zhiyong Luo, "Fringe-pattern denoising based on discrete topological analysis," Opt. Lett. 35, 3526-3528 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. W. Macy, Appl. Opt. 22, 3898 (1983). [CrossRef] [PubMed]
  2. K. A. Nugent, Appl. Opt. 24, 3101 (1985). [CrossRef] [PubMed]
  3. Y. Surrel, Appl. Opt. 35, 51 (1996). [CrossRef] [PubMed]
  4. P. Gao, B. L. Yao, and J. H. Han, J. Mod. Opt. 55, 2233 (2008). [CrossRef]
  5. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. L. Yao, Opt. Lett. 35, 712 (2010). [CrossRef] [PubMed]
  6. C. Tang, L. Han, H. W. Ren, D. J. Zhou, Y. M. Chang, X. H. Wang, and X. L. Cui, Opt. Lett. 33, 2179 (2008). [CrossRef] [PubMed]
  7. C. Tang, W. P. Wang, H. Q. Yan, and X. H. Gu, Appl. Opt. 46, 2907 (2007). [CrossRef] [PubMed]
  8. C. Tang, T. Gao, S. Yan, L. L. Wang, and J. Wu, Opt. Express 18, 8942 (2010). [CrossRef] [PubMed]
  9. K. M. Qian and H. S. Seah, Opt. Lett. 32, 127 (2007). [CrossRef]
  10. K. M. Qian, H. X. Wang, and W. J. Gao, Appl. Opt. 47, 5408 (2008). [CrossRef]
  11. K. M. Qian, W. J. Gao, and H. X. Wang, Appl. Opt. 49, 1075 (2010). [CrossRef]
  12. B. Samet, C. R. Math 336, 1033 (2003). [CrossRef]
  13. S. Amstutz, I. Horchani, and M. Masmoudi, Control Cybern. 34, 81 (2005).
  14. L. J. Belaid, M. Jaoua, M. Masmoudi, and L. Siala, C. R. Math 342, 313 (2006). [CrossRef]
  15. D. Auroux and M. Masmoudi, J. Math. Imaging Vision 33, 122 (2009). [CrossRef]
  16. D. Auroux, Math. Comput. Model. 49, 2191 (2009). [CrossRef]
  17. I. Larrabide, R. A. Feijóo, A. A. Novotny, and E. A. Taroco, Comput. Struct. 86, 1386 (2008). [CrossRef]
  18. W. J. Zhang and W. B. Zhang, in Fifth International Conference on Information Assurance and Security (IEEE, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited