OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3535–3537

Universal description of geometric phases in higher-order optical modes bearing orbital angular momentum

Steven J.M. Habraken and Gerard Nienhuis  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3535-3537 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study geometric phases that arise from (cyclic) transformations of the transverse spatial structure of paraxial optical modes. Our approach involves bosonic ladder operators that, in the spirit of the quantum-mechanical harmonic oscillator, generate sets of transverse optical modes. It applies to modes of all orders in a very natural way and provides a universal geometric interpretation of the phase shifts acquired by nonastigmatic modes under typical experimental conditions.

© 2010 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(080.2730) Geometric optics : Matrix methods in paraxial optics
(350.1370) Other areas of optics : Berry's phase
(070.3185) Fourier optics and signal processing : Invariant optical fields
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

Original Manuscript: July 8, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 18, 2010
Published: October 15, 2010

Steven J. M. Habraken and Gerard Nienhuis, "Universal description of geometric phases in higher-order optical modes bearing orbital angular momentum," Opt. Lett. 35, 3535-3537 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984). [CrossRef]
  2. S. Pancharatnam, Proc. Ind. Acad. Sci. A 44, 247 (1956).
  3. A. K. Jha, M. Malik, and R. W. Boyd, Phys. Rev. Lett. 101, 180405 (2008). [CrossRef] [PubMed]
  4. A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986). [CrossRef] [PubMed]
  5. R. Y. Chiao and T. F. Jordan, Phys. Lett. A 132, 77 (1988). [CrossRef]
  6. S. J. van Enk, Opt. Commun. 102, 59 (1993). [CrossRef]
  7. M. Padgett and J. Courtial, Opt. Lett. 24, 430 (1999). [CrossRef]
  8. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, Phys. Rev. Lett. 90, 203901(2003). [CrossRef] [PubMed]
  9. L. Allen and M. J. Padgett, J. Mod. Opt. 54, 487 (2007). [CrossRef]
  10. E. J. Galvez and M. A. O’Connell, Proc. SPIE 5736, 166(2005). [CrossRef]
  11. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). [CrossRef]
  12. G. Nienhuis and L. Allen, Phys. Rev. A 48, 656 (1993). [CrossRef] [PubMed]
  13. J. Visser and G. Nienhuis, J. Opt. A 6, S248 (2004). [CrossRef]
  14. J. Visser and G. Nienhuis, Phys. Rev. A 70, 013809 (2004). [CrossRef]
  15. E. G. Abramochkin and V. G. Volostnikov, J. Opt. A 6, S157(2004). [CrossRef]
  16. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993). [CrossRef]
  17. S. Tiwari, J. Mod. Opt. 39, 1097 (1992). [CrossRef]
  18. S. J. M. Habraken and G. Nienhuis, J. Math. Phys. 51, 082702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited