OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 22 — Nov. 15, 2010
  • pp: 3769–3771

In situ characterization of an optical cavity using atomic light shift

A. Bertoldi, S. Bernon, T. Vanderbruggen, A. Landragin, and P. Bouyer  »View Author Affiliations

Optics Letters, Vol. 35, Issue 22, pp. 3769-3771 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the precise characterization of the optical potential obtained by injecting a distributed-feedback erbium-doped fiber laser at 1560 nm to the transverse modes of a folded optical cavity. The optical potential was mapped in situ using cold rubidium atoms, whose potential energy was spectrally resolved thanks to the strong differential light shift induced by the 1560 nm laser on the two levels of the probe transition. The optical potential obtained in the cavity is suitable for trapping rubidium atoms and eventually to achieve all-optical Bose–Einstein condensation directly in the resonator.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.3690) Atomic and molecular physics : Line shapes and shifts
(140.4780) Lasers and laser optics : Optical resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 6, 2010
Manuscript Accepted: September 23, 2010
Published: November 4, 2010

A. Bertoldi, S. Bernon, T. Vanderbruggen, A. Landragin, and P. Bouyer, "In situ characterization of an optical cavity using atomic light shift," Opt. Lett. 35, 3769-3771 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000). [CrossRef]
  2. A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, M. Weidemüller, and R. Grimm, Opt. Lett. 26, 1837 (2001). [CrossRef]
  3. D. Kruse, M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann, Ph. W. Courteille, Th. Elsässer, B. Nagorny, and A. Hemmerich, Phys. Rev. A 67, 051802 (2003). [CrossRef]
  4. V. Vuletić and S. Chu, Phys. Rev. Lett. 84, 3787 (2000). [CrossRef] [PubMed]
  5. H. W. Chan, A. T. Black, and V. Vuletić, Phys. Rev. Lett. 90, 063003 (2003). [CrossRef] [PubMed]
  6. B. Nagorny, Th. Elsässer, and A. Hemmerich, Phys. Rev. Lett. 91, 153003 (2003). [CrossRef] [PubMed]
  7. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev. Lett. 104, 073604 (2010). [CrossRef] [PubMed]
  8. S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, Phys. Rev. Lett. 98, 053603 (2007). [CrossRef] [PubMed]
  9. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, Nature 450, 268 (2007). [CrossRef] [PubMed]
  10. J. P. Brantut, J. F. Clément, M. Robert de Saint Vincent, G. Varoquaux, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Phys. Rev. A 78, 031401 (2008). [CrossRef]
  11. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, Opt. Lett. 34, 914 (2009). [CrossRef] [PubMed]
  12. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983). [CrossRef]
  14. The two-photon transition on the D2 line is inhibited by selection rules, and it is further suppressed by tuning the laser frequency so as to avoid the resonance condition.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited