OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 22 — Nov. 15, 2010
  • pp: 3814–3816

Loss measurement of plasmonic modes in planar metal–insulator–metal waveguides by an attenuated total reflection method

Chien-I Lin and Thomas K. Gaylord  »View Author Affiliations

Optics Letters, Vol. 35, Issue 22, pp. 3814-3816 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental excitation and characterization of surface plasmon modes in planar metal–insulator–metal (MIM) waveguides. Our approach is based on determining the width of the reflection angular spectrum in the attenuated total reflection (ATR) configuration. Owing to its transverse character, the ATR configuration provides a more straightforward and simpler way to determine the loss of plasmonic modes in MIM structures, compared to using tapered end couplers with multiple waveguide samples or scanning near-field optical microscopy. In this Letter, two waveguide structures with Au claddings and 50 / 200 nm SiO 2 cores are investigated. The propagation lengths measured at λ = 1.55 μm are 5.7 and 18 μm , respectively, in agreement with the theoretical predictions.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

Original Manuscript: August 16, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: October 20, 2010
Published: November 9, 2010

Chien-I Lin and Thomas K. Gaylord, "Loss measurement of plasmonic modes in planar metal–insulator–metal waveguides by an attenuated total reflection method," Opt. Lett. 35, 3814-3816 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, Science 311, 189 (2006). [CrossRef] [PubMed]
  4. E. Feigenbaum and M. Orenstein, J. Lightwave Technol. 25, 2547 (2007). [CrossRef]
  5. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004). [CrossRef]
  6. J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  8. J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003). [CrossRef]
  9. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008). [CrossRef] [PubMed]
  10. C.-I. Lin and T. K. Gaylord, Appl. Opt. 48, 3603 (2009). [CrossRef] [PubMed]
  11. C.-I. Lin and T. K. Gaylord, Appl. Opt. 49, 936 (2010). [CrossRef] [PubMed]
  12. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970). [CrossRef]
  13. P. K. Tien and R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970). [CrossRef]
  14. A. E. Craig, G. A. Olson, and D. Sarid, Opt. Lett. 8, 380 (1983). [CrossRef] [PubMed]
  15. J. C. Quail, J. G. Rako, and H. J. Simon, Opt. Lett. 8, 377 (1983). [CrossRef] [PubMed]
  16. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991). [CrossRef] [PubMed]
  17. A. Otto, Z. Phys. 216, 398 (1968). [CrossRef]
  18. Metricon Corporation, http://www.metricon.com/.
  19. E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992). [CrossRef]
  20. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  21. A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981). [CrossRef]
  22. S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited