OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 23 — Dec. 1, 2010
  • pp: 3991–3993

160 GHz harmonic mode-locked AlGaInAs 1.55 μm strained quantum-well compound-cavity laser

Lianping Hou, Mohsin Haji, Rafal Dylewicz, Piotr Stolarz, Bocang Qiu, Eugene A. Avrutin, and A. Catrina Bryce  »View Author Affiliations

Optics Letters, Vol. 35, Issue 23, pp. 3991-3993 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We characterized the reflectivity and the modal discrimination of intracavity reflectors (ICRs) with different numbers of slots and presented harmonic mode-locking operation of a monolithic semiconductor laser comprising a compound cavity formed by a single deeply etched slot ICR fabricated from 1.55 μm AlGaInAs strained quantum well material. Gaussian pulses were generated at a 161.8 GHz repetition rate with a pulse duration of 1.67 ps and a time–bandwidth product of 0.81.

© 2010 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 23, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 18, 2010
Published: November 23, 2010

Lianping Hou, Mohsin Haji, Rafal Dylewicz, Piotr Stolarz, Bocang Qiu, Eugene A. Avrutin, and A. Catrina Bryce, "160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser," Opt. Lett. 35, 3991-3993 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, IEEE Photon. Technol. Lett. 16, 1558 (2004). [CrossRef]
  2. Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, Electron. Lett. 37, 581 (2001). [CrossRef]
  3. T. Shimizu, I. Ogura, and H. Yokoyama, Electron. Lett. 33, 1868 (1997). [CrossRef]
  4. S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996). [CrossRef]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002). [CrossRef]
  6. L. Hou, P. Stolarz, R. Dylewicz, M. Haji, J. Javaloyes, B. Qiu, and A. C. Bryce, IEEE Photon. Technol. Lett. 22, 727(2010). [CrossRef]
  7. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. C. Bryce, IEEE Photon. Technol. Lett. 21, 1731 (2009). [CrossRef]
  8. S. A. Merritt, C. Dauga, S. Fox, I.-F. Wu, and M. Dagenais, J. Lightwave Technol. 13, 430 (1995). [CrossRef]
  9. J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, Semicond. Sci. Technol. 20, 1149 (2005). [CrossRef]
  10. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited