OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 23 — Dec. 1, 2010
  • pp: 4027–4029

Miniature 10 kHz thermo-optic delay line in silicon

Eduardo Margallo-Balbás, Max Geljon, Grégory Pandraud, and Patrick J. French  »View Author Affiliations

Optics Letters, Vol. 35, Issue 23, pp. 4027-4029 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scanning delay line is a key component of time-domain optical coherence tomography systems. It has evolved since its inception toward higher scan rates and simpler implementation. However, existing approaches still suffer from drawbacks in terms of size, cost, and complexity, and they are not suitable for implementation using integrated optics. In this Letter, we report a rapid scanning delay line based on the thermo-optic effect of silicon at λ = 1.3 μm manufactured around a generic planar lightwave circuit technology. The reported device attained line scan rates of 10 kHz and demonstrated a scan range of 0.95 mm without suffering any observable loss of resolution ( 15 µm FWHM) owing to depth-dependent chromatic dispersion.

© 2010 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Integrated Optics

Original Manuscript: July 15, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: September 24, 2010
Published: November 24, 2010

Eduardo Margallo-Balbás, Max Geljon, Grégory Pandraud, and Patrick J. French, "Miniature 10 kHz thermo-optic delay line in silicon," Opt. Lett. 35, 4027-4029 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992). [CrossRef] [PubMed]
  2. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 21, 1408 (1996). [CrossRef] [PubMed]
  3. Handbook of Optical Coherence Tomography, B.E.Bouma and G.J.Tearney, eds. (Informa Health Care, 2002).
  4. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, Opt. Lett. 22, 1811 (1997). [CrossRef]
  5. W. Gao, Appl. Opt. 46, 986 (2007). [CrossRef] [PubMed]
  6. G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995). [CrossRef]
  7. G. Ghosh, Appl. Phys. Lett. 66, 3570 (1995). [CrossRef]
  8. M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited