OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 24 — Dec. 15, 2010
  • pp: 4115–4117

Arbitrary truncation order three-point finite difference method for optical waveguides with stepwise refractive index discontinuities

Slawomir Sujecki  »View Author Affiliations


Optics Letters, Vol. 35, Issue 24, pp. 4115-4117 (2010)
http://dx.doi.org/10.1364/OL.35.004115


View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An exact finite difference (FD) representation of the second-order derivative on three nodes is presented and used to obtain an FD algorithm that allows achieving an arbitrary truncation order. The FD weights are calculated analytically using the series that expresses the field value at a given FD node in terms of the field value and its derivatives at a neighboring node, when a stepwise discontinuity in the refractive index distribution is present between the nodes. The results obtained confirm that the proposed algorithm is accurate, efficient, and achieves the predicted improved performance.

© 2010 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves

ToC Category:
Integrated Optics

History
Original Manuscript: October 1, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: November 4, 2010
Published: December 9, 2010

Citation
Slawomir Sujecki, "Arbitrary truncation order three-point finite difference method for optical waveguides with stepwise refractive index discontinuities," Opt. Lett. 35, 4115-4117 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-24-4115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Stern, IEE Proc. J. Optoelectron. 135, 56 (1988). [CrossRef]
  2. C. Vassallo, IEE Proc. J. Optoelectron. 139, 137 (1992). [CrossRef]
  3. J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama, and H. Nakano, IEEE Photon. Technol. Lett. 9, 961 (1997). [CrossRef]
  4. J. Yamauchi, G. Takahashi, and H. Nakano, IEEE Photon. Technol. Lett. 10, 1127 (1998). [CrossRef]
  5. Y. P. Chiou, Y. C. Chiang, and H. C. Chang, J. Lightwave Technol. 18, 243 (2000). [CrossRef]
  6. R. Stoffer and H. J. W. M. Hoekstra, Opt. Quantum Electron. 30, 375 (1998). [CrossRef]
  7. J. G. Wykes, P. Sewell, A. Vukovic, and T. M. Benson, Microw. Opt. Technol. Lett. 44, 95 (2005). [CrossRef]
  8. B. Hu, P. Sewell, J. G. Wykes, A. Vukovic, and T. M. Benson, Microw. Opt. Technol. Lett. 50, 995 (2008). [CrossRef]
  9. G. R. Hadley, J. Lightwave Technol. 16, 134 (1998). [CrossRef]
  10. Y. P. Chiou and C. H. Du, Opt. Express 18, 4088 (2010). [CrossRef] [PubMed]
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  12. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halsted, 1992).
  13. R. Pregla, Analysis of Electromagnetic Fields and Waves: The Method of Lines (Wiley, 2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited