OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 24 — Dec. 15, 2010
  • pp: 4190–4192

Optimization of gain-assisted waveguiding in metal–dielectric nanowires

Dayan Handapangoda, Ivan D. Rukhlenko, Malin Premaratne, and Chennupati Jagadish  »View Author Affiliations

Optics Letters, Vol. 35, Issue 24, pp. 4190-4192 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate that, for a given diameter of the core-pumped metal–dielectric nanowire, there is an optimum thickness of the metallic cladding that provides the maximum propagation length of the lowest-order surface plasmon polariton (SPP) modes. If the nanowire is fabricated with the optimum cladding thickness, the lowest pumping power is required to fully compensate for the SPP propagation losses. We also show that a strong confinement of SPPs within the nanowire can be achieved, but at the expense of either high optical gains or large nanowire diameters. For example, a gain of 565 cm 1 would suffice to make up for the decay of SPPs in a 250-nm-thick silver–GaAs nanowire; the confinement of optical power within such nanowires exceeds 90%, which makes them ideal interconnects for nanophotonic circuitry.

© 2010 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: September 21, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 14, 2010
Published: December 14, 2010

Dayan Handapangoda, Ivan D. Rukhlenko, Malin Premaratne, and Chennupati Jagadish, "Optimization of gain-assisted waveguiding in metal–dielectric nanowires," Opt. Lett. 35, 4190-4192 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef] [PubMed]
  3. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, Opt. Express 16, 1385 (2008). [CrossRef] [PubMed]
  4. M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004). [CrossRef] [PubMed]
  5. S. A. Maier, Opt. Commun. 258, 295 (2006). [CrossRef]
  6. V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008). [CrossRef]
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  8. U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001). [CrossRef]
  9. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981). [CrossRef]
  10. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  12. W. L. Barnes, J. Opt. A 8, S87 (2006). [CrossRef]
  13. S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992). [CrossRef]
  14. S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994). [CrossRef]
  15. P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited