OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 24 — Dec. 15, 2010
  • pp: 4217–4219

Control of gradient catastrophes developing from dark beams

S. Malaguti, A. Corli, and S. Trillo  »View Author Affiliations


Optics Letters, Vol. 35, Issue 24, pp. 4217-4219 (2010)
http://dx.doi.org/10.1364/OL.35.004217


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate dispersive shock waves developing via a gradient catastrophe during propagation of a dark beam in Kerr defocusing media, showing that a good degree of control, and even shock suppression, is possible by introducing a suitable phase chirp. Insight into the process is obtained by means of a suitable reduction of the hydrodynamic limit of the governing nonlinear Schrödinger equation.

© 2010 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 9, 2010
Revised Manuscript: November 8, 2010
Manuscript Accepted: November 11, 2010
Published: December 15, 2010

Citation
S. Malaguti, A. Corli, and S. Trillo, "Control of gradient catastrophes developing from dark beams," Opt. Lett. 35, 4217-4219 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-24-4217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974).
  2. A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz 65, 590 (1973) [Sov. Phys. JETP 38, 291 (1974) (in Russian)].
  3. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985). [CrossRef] [PubMed]
  4. J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989). [CrossRef] [PubMed]
  5. M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, and V. Schweikhard, Phys. Rev. A 74, 023623(2006). [CrossRef]
  6. W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46 (2007). [CrossRef]
  7. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007). [CrossRef] [PubMed]
  8. A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, Phys. Rev. E 66, 036609 (2002). [CrossRef]
  9. Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science 293, 663 (2001). [CrossRef] [PubMed]
  10. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 102, 083902 (2009). [CrossRef] [PubMed]
  11. Y. Kodama and S. Wabnitz, Opt. Lett. 20, 2291 (1995). [CrossRef] [PubMed]
  12. M. G. Forest, J. N. Kutz, and K. T. R. McLaughlin, J. Opt. Soc. Am. B 16, 1856 (1999). [CrossRef]
  13. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroiga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993). [CrossRef]
  14. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, Nat. Phys. 3, 597 (2007). [CrossRef]
  15. L. D. Landau and E. M. Lifshitz, Fluid Mechanics(Butterworth-Heinemann, 1987).
  16. O. C. Wright, M. G. Forest, and K. T. R. McLaughlin, Phys. Lett. A 257, 170 (1999). [CrossRef]
  17. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Society for Industrial and Applied Mathematics, 1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited