OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 3 — Feb. 1, 2010
  • pp: 291–293

Fluorescence quenching by a metal nanoparticle in the extreme near-field regime

E. Castanié, M. Boffety, and R. Carminati  »View Author Affiliations


Optics Letters, Vol. 35, Issue 3, pp. 291-293 (2010)
http://dx.doi.org/10.1364/OL.35.000291


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the spontaneous decay rate of a dipole emitter close to a metallic nanoparticle in the extreme near-field regime. The metal is modeled using a nonlocal dielectric function that accounts for the microscopic length scales of the free electron gas. We describe quantitatively the crossover between the macroscopic and microscopic regimes and the enhanced nonradiative decay due to microscopic interactions. Our theory is in agreement with results previously established in the asymptotic near- and far-field regimes.

© 2010 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.2510) Physical optics : Fluorescence
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:
Physical Optics

History
Original Manuscript: October 20, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 21, 2009
Published: January 22, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Citation
E. Castanié, M. Boffety, and R. Carminati, "Fluorescence quenching by a metal nanoparticle in the extreme near-field regime," Opt. Lett. 35, 291-293 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-3-291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978). [CrossRef]
  2. P.Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  3. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  4. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  5. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005). [CrossRef] [PubMed]
  6. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nature Photon. 2, 234 (2008). [CrossRef]
  7. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzales, Appl. Phys. Lett. 85, 3863 (2004). [CrossRef]
  8. S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, Mol. Phys. 106, 893 (2008). [CrossRef]
  9. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, Nano Lett. 7, 3157 (2007). [CrossRef] [PubMed]
  10. J. Seelig, K. Leslie, A. Renn, S. Kühn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, Nano Lett. 7, 685 (2007). [CrossRef] [PubMed]
  11. G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984). [CrossRef]
  12. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, Phys. Rev. B 69, 121403(R) (2004). [CrossRef]
  13. J. Vielma and P. T. Leung, J. Chem. Phys. 126, 194704 (2007). [CrossRef] [PubMed]
  14. T. L. Jennings, M. P. Singh, and G. F. Strouse, J. Am. Chem. Soc. 128, 5462 (2006). [CrossRef] [PubMed]
  15. O. Keller, Phys. Rep. 268, 85 (1996). [CrossRef]
  16. J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984). [CrossRef]
  17. H. Chew, J. Chem. Phys. 87, 1355 (1987). [CrossRef]
  18. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006). [CrossRef]
  19. J. E. Sipe, J. Opt. Soc. Am. B 4, 481 (1987). [CrossRef]
  20. C. Henkel and K. Joulain, Appl. Phys. B 84, 61 (2006). [CrossRef]
  21. P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, Phys. Rev. B 77, 035431 (2008). [CrossRef]
  22. The LM functions read fl(a,u)=1/2+[1−(a−u)2]/(8a)ln[(a−u+1)/(a−u−1)]+[1−(a+u)2]/(8a)ln[(a+u+1)/(a+u−1)] and ft(a,u)=3(a2+3u2+1)/8−3[1−(a−u)2]2/(32a)ln[(a−u+1)/(a−u−1)]−3[1−(a+u)2]2/(32a)ln[(a+u+1)/(a+u−1)]. The limit u-->0 has to be taken with a positive imaginary part so that ln[(a+/-u+1)/(a+/-u−1)]~ln|(a+1)/(a−1)|.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited