OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 4 — Feb. 15, 2010
  • pp: 526–528

Phase locking of two coupled lasers with many longitudinal modes

Moti Fridman, Micha Nixon, Eitan Ronen, Asher A. Friesem, and Nir Davidson  »View Author Affiliations

Optics Letters, Vol. 35, Issue 4, pp. 526-528 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detailed experimental and theoretical investigations of two coupled fiber lasers, each with many longitudinal modes, reveal that the behavior of the longitudinal modes depends on both the coupling strength and the detuning between them. For low to moderate coupling strength only longitudinal modes that are common for both lasers phase lock, while those that are not common gradually disappear. For larger coupling strengths, the longitudinal modes that are not common reappear and phase lock. When the coupling strength approaches unity the coupled lasers behave as a single long cavity with correspondingly denser longitudinal modes. Finally, we show that the gradual increase in phase locking as a function of the coupling strength results from competition between phase-locked and non-phase-locked longitudinal modes.

© 2010 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 2, 2009
Revised Manuscript: December 29, 2009
Manuscript Accepted: January 4, 2010
Published: February 9, 2010

Moti Fridman, Micha Nixon, Eitan Ronen, Asher A. Friesem, and Nir Davidson, "Phase locking of two coupled lasers with many longitudinal modes," Opt. Lett. 35, 526-528 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Roy and K. S. Thornburg, Jr., Phys. Rev. Lett. 72, 2009 (1997). [CrossRef]
  2. A. F. Glova, Quantum Electron. 33, 283 (2003). [CrossRef]
  3. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005). [CrossRef]
  4. L. Fabiny, P. Colet, R. Roy, and D. Lensta, Phys. Rev. A 47, 4287 (1993). [CrossRef] [PubMed]
  5. M. Fridman, V. Eckhouse, N. Davidson, and A. A. Friesem, Opt. Lett. 32, 790 (2007). [CrossRef] [PubMed]
  6. V. Eckhouse, M. Fridman, N. Davidson, and A. A. Friesem, Phys. Rev. Lett. 100, 024102 (2008). [CrossRef] [PubMed]
  7. M. Nakamura, K. Aiki, N. Chinone, R. Ito, and J. Umeda, J. Appl. Phys. 49, 4644 (1978). [CrossRef]
  8. A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-i Ueda, Opt. Lett. 10, 1167 (1999).
  9. A. Shirakawa, K. Matsuo, and K.-i. Ueda, Proc. SPIE 5662, 482 (2004). [CrossRef]
  10. J. E. Rothenberg, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuP3.
  11. T. Wu, W. Chang, A. Galvanauskas, and H. G. Winful, Opt. Express 17, 19509 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited