OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 4 — Feb. 15, 2010
  • pp: 586–588

Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C

Mattias L. Åslund, John Canning, Michael Stevenson, and Kevin Cook  »View Author Affiliations

Optics Letters, Vol. 35, Issue 4, pp. 586-588 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermal stability of Type I gratings is increased by postthermal tuning of the grating. Optimization of the procedure leads to gratings that can withstand temperatures as high as 600 ° C . Aging tests lead to lifetime predictions as high as 25  years with < 3 dB reduction at 400 ° C . Single exponential relaxation is observed. Above 800 ° C regeneration is obtained.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 24, 2009
Manuscript Accepted: December 29, 2009
Published: February 11, 2010

Mattias L. Åslund, John Canning, Michael Stevenson, and Kevin Cook, "Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C," Opt. Lett. 35, 586-588 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Schroeder, T. Yamate, and E. Udd, Proc. SPIE 3746, 42 (1999).
  2. D. Kersey, IEICE Trans. E83-C, 400 (2000).
  3. J. C. Cardozo da Silva, C. Martelli, H. J. Kalinowski, E. Penner, J. Canning, and N. Groothoff, Opt. Lasers Eng. 45, 88 (2007). [CrossRef]
  4. J. Epaarachchi, J. Canning, and M. Stevenson, J. Compos. Mater. DOI:10.1177/0021998309346382 (2009).
  5. J. Canning, Laser Photonics Rev. 2, 275 (2008). [CrossRef]
  6. P. Hill, G. R. Atkins, J. Canning, G. Cox, and M. G. Sceats, Appl. Opt. 34, 7689 (1995), and references therein. [CrossRef] [PubMed]
  7. M. L. Åslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, Opt. Express 16, 14248 (2008). [CrossRef] [PubMed]
  8. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, J. Lightwave Technol. 22, 94 (2004). [CrossRef]
  9. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006). [CrossRef]
  10. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008). [CrossRef] [PubMed]
  11. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, Sensors 8, 6448 (2008). [CrossRef]
  12. H. R. Sørenson, J. Canning, and M. Kristensen, Opt. Express 13, 2276 (2005). [CrossRef]
  13. H. G. Inglis, Ph.D. dissertation (University of Sydney, 1997).
  14. C. A. Angell, Science 267, 1924 (1995). [CrossRef] [PubMed]
  15. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, J. Lightwave Technol. 15, 1470 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited