OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 4 — Feb. 15, 2010
  • pp: 610–612

Well-confined surface plasmon polaritons for sensing applications in the near-infrared

C. H. Gan and P. Lalanne  »View Author Affiliations

Optics Letters, Vol. 35, Issue 4, pp. 610-612 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface plasmon polariton (SPP) dispersion at the interface between a dielectric half-space and a layered metallodielectric metamaterial is investigated. By varying the material constituants, it is shown that the SPP resonance frequency can be readily shifted to the near-IR. Through numerical simulations, the validity domain of homogenization and the effects of the finite number of layers in the metamaterial are studied. It is found that as few as N = 2 periods are sufficient for practical operation. These results reveal the potential of employing metallodielectric stacks for sensing applications in the near-IR regime.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: November 30, 2009
Revised Manuscript: January 13, 2010
Manuscript Accepted: January 14, 2010
Published: February 12, 2010

C. H. Gan and P. Lalanne, "Well-confined surface plasmon polaritons for sensing applications in the near-infrared," Opt. Lett. 35, 610-612 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. X. Luo, and T. Ishihara, Opt. Express 12, 3055 (2004). [CrossRef] [PubMed]
  3. B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006). [CrossRef]
  4. A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009). [CrossRef]
  5. S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007). [CrossRef]
  6. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007). [CrossRef]
  7. J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004). [CrossRef] [PubMed]
  8. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, Opt. Lett. 34, 3535 (2009). [CrossRef] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  10. A. Yariv, and P. YehOptical Waves in Crystals (Wiley-Interscience, 2003).
  11. J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  13. B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000). [CrossRef]
  14. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, Opt. Lett. 32, 1578 (2007). [CrossRef] [PubMed]
  15. P. Lalanne, and D. Lemercier-Lalanne, J. Opt. Soc. Am. A 14, 450 (1997). [CrossRef]
  16. C. Gu, and P. Yeh, Opt. Lett. 21, 504 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited