OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 5 — Mar. 1, 2010
  • pp: 685–687

Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays

Yueke Wang, Keya Zhou, Xueru Zhang, Kun Yang, Yuxiao Wang, Yinglin Song, and Shutian Liu  »View Author Affiliations

Optics Letters, Vol. 35, Issue 5, pp. 685-687 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Discrete plasmonic Talbot effect in the subwavelength metal waveguide arrays (SMWAS) is theoretically analyzed and numerically simulated. Based on the finite-difference time-domain technique, we discuss the influence of the structural parameters on the Talbot distance. By carefully choosing the geometry parameters, the Talbot distance decreases to about one third of the incident wavelength. The numerical simulation results agree with the theory of the discrete Talbot effect in the SMWAS.

© 2010 Optical Society of America

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: November 3, 2009
Manuscript Accepted: January 7, 2010
Published: February 25, 2010

Yueke Wang, Keya Zhou, Xueru Zhang, Kun Yang, Yuxiao Wang, Yinglin Song, and Shutian Liu, "Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays," Opt. Lett. 35, 685-687 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. H. F. Talbot, Philos. Mag. 9, 401 (1836).
  3. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, Opt. Lett. 16, 823 (1991). [CrossRef] [PubMed]
  4. J. Azana, Opt. Lett. 30, 227 (2005). [CrossRef] [PubMed]
  5. L. Liu, Opt. Lett. 14, 1312 (1989). [CrossRef] [PubMed]
  6. L. Liu, Appl. Opt. 28, 4668 (1989). [CrossRef] [PubMed]
  7. M. R. Dennis, N. I. Zheludev, and F. J. Garc'ıa de Abajo, Opt. Express 15, 9692 (2007). [CrossRef] [PubMed]
  8. A. A. Maradudin and T. A. Leskova, New J. Phys. 11, 033004 (2009). [CrossRef]
  9. W. W. Zhang, C. L. Zhao, J. Y. Wang, and J. S. Zhang, Opt. Express 17, 19757 (2009). [CrossRef] [PubMed]
  10. X. Fan, G. Wang, J. Lee, and C. T. Chan, Phys. Rev. Lett. 97, 073901 (2006). [CrossRef] [PubMed]
  11. Y. M. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett. 99, 153901 (2007). [CrossRef] [PubMed]
  12. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, Phys. Rev. Lett. 103, 033902 (2009). [CrossRef] [PubMed]
  13. W. H. Lin, X. Zhou, G. P. Wang, and C. T. Chan, Appl. Phys. Lett. 91, 243113 (2007). [CrossRef]
  14. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, and G. I. Stegeman, Phys. Rev. Lett. 95, 053902 (2005). [CrossRef] [PubMed]
  15. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  18. M. D. Feit and J. A. Fleck, Appl. Opt. 17, 3990 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited