OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 5 — Mar. 1, 2010
  • pp: 736–738

Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential

Zhixin Xu, Changrong Wang, Wei Qi, and Zhefeng Yuan  »View Author Affiliations

Optics Letters, Vol. 35, Issue 5, pp. 736-738 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design and experimentally report strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential. At a lower applied electric field ( F = 50   kV / cm ) , the calculated blueshift of the lowest excitonic peak is 40.6 meV. In the room-temperature photocurrent experiments, a maximum upward shift of the apparent peak position of more than 35 meV is observed with an external reverse bias of −4 V. Furthermore, a lower absorption loss ( α = 9.8 cm 1 ) and a large negative refractive index change ( Δ n = 0.0095 ) are obtained at 1.55 μ m . This indicates that the strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential have a great potential for application to reflection type electro-optical switches.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics

Original Manuscript: December 3, 2009
Revised Manuscript: January 26, 2010
Manuscript Accepted: January 26, 2010
Published: February 26, 2010

Zhixin Xu, Changrong Wang, Wei Qi, and Zhefeng Yuan, "Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential," Opt. Lett. 35, 736-738 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Shimomura, S. Ara, and Y. Suematsu, IEEE J. Quantum Electron. 28, 471 (1992). [CrossRef]
  2. J. Weiner, Appl. Phys. Lett. 50, 842 (1987). [CrossRef]
  3. T. Suzuki, T. Arakawa, K. Tada, Y. Imazato, J. H. Noh, and N. Hancji, Jpn. J. Appl. Phys. 43, L1540 (2004). [CrossRef]
  4. Z. X. Xu, Proc. SPIE 7135, 71350Y (2008). [CrossRef]
  5. M. Fukuoka, T. Hariki, S. Tajtsu, T. Toya, T. Arakawa, and K. Tada, in 34th European Conference on Optical Communication (ECOC 2008) (IEEE, 2008), Vol. 5, p. 95.
  6. Y. J. Ding, C. L. Luo, S. Li, and J. B. Khurgin, Appl. Phys. Lett. 59, 1025 (1991). [CrossRef]
  7. N. Susa and T. Nakahara, Electron. Lett. 28, 941 (1992). [CrossRef]
  8. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985). [CrossRef]
  9. D. Gershoni, H. Temkin, M. B. Panish, and R. A. Hamm, Phys. Rev. B 39, 5531 (1989). [CrossRef]
  10. A. N. Cheng, H. H. Wider, and W. S. C. Chang, IEEE Photon. Technol. Lett. 7, 1159 (1995). [CrossRef]
  11. H. Mohseni, Appl. Phys. Lett. 86, 031103 (2005). [CrossRef]
  12. K. Wakita, O. Mitomi, I. Kotaka, S. Nojima, and Y. Kawamura, IEEE Photon. Technol. Lett. 1, 441 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited