OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 6 — Mar. 15, 2010
  • pp: 835–837

Multilongitudinal mode fiber laser for strain measurement

Shengchun Liu, Zuowei Yin, Liang Zhang, Liang Gao, Xiangfei Chen, and Jianchun Cheng  »View Author Affiliations

Optics Letters, Vol. 35, Issue 6, pp. 835-837 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multilongitudinal mode fiber laser sensor formed by two fiber Bragg gratings and a piece of erbium-doped fiber is first proposed and validated experimentally. When the strain is applied on the sensor, the laser cavity is stretched, which leads to a change of round-trip frequency. Thus the strain can be obtained by measuring the beat frequency of the resonant cavity. The proposed sensor is found to be characterized with simplicity, easy setup, high resolution, low-cost demodulation, and good stability. Experimental results show that the sensor has a sensitivity of 1.1 KHz μ ϵ and the root-mean-square deviation of 3.6 μ ϵ .

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3500) Lasers and laser optics : Lasers, erbium
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 15, 2009
Revised Manuscript: December 13, 2009
Manuscript Accepted: December 30, 2009
Published: March 12, 2010

Shengchun Liu, Zuowei Yin, Liang Zhang, Liang Gao, Xiangfei Chen, and Jianchun Cheng, "Multilongitudinal mode fiber laser for strain measurement," Opt. Lett. 35, 835-837 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Koo and A. D. Kersey, Electron. Lett. 31, 1180 (1995). [CrossRef]
  2. D. J. Hill, B. Hodder, J. D. Freitas, S. D. Thomas, and L. Hichkey, Proc. SPIE 5855, 904 (2005). [CrossRef]
  3. W. Zhang, Y. Liu, F. Li, and H. Xiao, J. Lightwave Technol. 26, 1349 (2008). [CrossRef]
  4. G. H. Ames and J. Maguire, IEEE Sens. J. 7, 557 (2007). [CrossRef]
  5. J. P. F. Wooler, B. Hodder, and R. I. Crickmore, Meas. Sci. Technol. 18, 884 (2007). [CrossRef]
  6. X. Yang, S. Luo, Z. Chen, J. H. Ng, and C. Lu, Opt. Commun. 271, 203 (2007). [CrossRef]
  7. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, Opt. Lett. 21, 1869 (1996). [CrossRef] [PubMed]
  8. A. Frank, K. Bohnert, K. Haroud, H. Brndle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, IEEE Photon. Technol. Lett. 15, 1758 (2003). [CrossRef]
  9. H. Fu, X. Shu, C. Mou, L. Zhang, S. He, and I. Bennioon, IEEE Photon. Technol. Lett. 21, 987 (2009). [CrossRef]
  10. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, IEEE Photon. Technol. Lett. 16, 169 (2005). [CrossRef]
  11. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, Appl. Opt. 38, 1953 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited