OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 7 — Apr. 1, 2010
  • pp: 947–949

Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms

John J. Healy and John T. Sheridan  »View Author Affiliations


Optics Letters, Vol. 35, Issue 7, pp. 947-949 (2010)
http://dx.doi.org/10.1364/OL.35.000947


View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The linear canonical transform may be used to simulate the effect of paraxial optical systems on wave fields. Using a recent definition of the discrete linear canonical transform, phase space diagram analyses of the sampling requirements of the direct method of calculating the Fresnel and other linear canonical transforms are more favorable than previously thought. Thus the direct method of calculating these transforms may be used with fewer samples than previously reported simply by making use of an appropriate reconstruction filter on the samples output by the algorithm.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.1995) Holography : Digital holography
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: December 21, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 18, 2010
Published: March 19, 2010

Citation
John J. Healy and John T. Sheridan, "Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms," Opt. Lett. 35, 947-949 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-7-947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kreis, Handbook of Holographic Interferometry, Optical and Digital Methods (Wiley-VCH, 2005).
  2. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009). [CrossRef]
  3. J.-J. Ding, Ph.D. thesis (National Taiwan University, 2001).
  4. B. M. Hennelly and J. T. Sheridan, J. Opt. Soc. Am. A 22, 917 (2005). [CrossRef]
  5. A. Stern, Signal Process. 86, 1421 (2006). [CrossRef]
  6. B. Deng, R. Tao, and Y. Wang, Sci. China Ser. F Inf. Sci. 49, 592 (2006). [CrossRef]
  7. L. Bing-Zhao, R. Tao, and Y. Wang, Signal Process. 87, 983 (2007). [CrossRef]
  8. A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, IEEE Trans. Signal Process. 56, 2383 (2008). [CrossRef]
  9. J. J. Healy, B. M. Hennelly, and J. T. Sheridan, Opt. Lett. 33, 2599 (2008). [CrossRef] [PubMed]
  10. S.-C. Pei and J.-J. Ding, IEEE Trans. Signal Process. 48, 1338 (2000). [CrossRef]
  11. X. Deng, B. Bihari, J. Gan, F. Zhao, and R. T. Chen, J. Opt. Soc. Am. A 17, 762 (2000). [CrossRef]
  12. B. M. Hennelly and J. T. Sheridan, J. Opt. Soc. Am. A 22, 928 (2005). [CrossRef]
  13. A. Stern, in Proceedings of the 5th International Workshop on Information Optics, G.Cristóbal, B.Javidi, and S.Vallmitjana, eds. (Springer, 2006), pp. 225-234.
  14. J. J. Healy and J. T. Sheridan, Signal Process. 89, 641 (2009). [CrossRef]
  15. F. Oktem and H. M. Ozaktas, IEEE Tran. Sig. Process. Lett. 16, 727 (2009). [CrossRef]
  16. J. J. Healy and J. T. Sheridan, J. Opt. Soc. Am. A 27, 21 (2010). [CrossRef]
  17. C. E. Shannon, Proc. IRE 37, 10 (1949). [CrossRef]
  18. D. G. Voelz and M. C. Roggemann, Appl. Opt. 48, 6132 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited