OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 7 — Apr. 1, 2010
  • pp: 992–994

Extraordinary infrared transmission through a periodic bowtie aperture array

Edward C. Kinzel and Xianfan Xu  »View Author Affiliations


Optics Letters, Vol. 35, Issue 7, pp. 992-994 (2010)
http://dx.doi.org/10.1364/OL.35.000992


View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The discovery of extraordinary transmission through periodic aperture arrays has generated significant interest. Most studies have used circular apertures and attributed enhanced transmission to surface plasmon polariton (SPP) resonances and/or Rayleigh–Wood anomalies (RWA). Bowtie apertures concentrate light and have much longer cutoff wavelengths than circular apertures and can be designed to be strongly resonant. We demonstrate here that the total transmission through a bowtie aperture array can exceed 85% ( 4 × the open area). Furthermore, we show that the high transmission is due to waveguide modes as opposed to the commonly believed SPP/RW phenomena. This work is focused on IR wavelengths near 9 μ m ; however, the results are broadly applicable and can be extended to optical frequencies.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 14, 2009
Revised Manuscript: February 19, 2010
Manuscript Accepted: February 22, 2010
Published: March 26, 2010

Citation
Edward C. Kinzel and Xianfan Xu, "Extraordinary infrared transmission through a periodic bowtie aperture array," Opt. Lett. 35, 992-994 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-7-992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Bethe, Phys. Rev. 66, 163 (1944). [CrossRef]
  2. D. M. Pozer, Microwave Engineering (Wiley, 2003).
  3. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  5. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  6. H. Leznec and T. Thio, Opt. Express 12, 3629 (2004). [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  8. F. J. Garcia de Abajo, Rev. Mod. Phys. 79, 1267 (2007). [CrossRef]
  9. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, Opt. Express 17, 2334 (2009). [CrossRef] [PubMed]
  10. S. Wu, Q. Wan, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, Appl. Phys. Lett. 93, 101113 (2008). [CrossRef]
  11. R. Gordon and A. G. Brolo, Opt. Express 13, 1933 (2005). [CrossRef] [PubMed]
  12. P. B. Catrysse, H. Shin, and S. Fan, Vac. Sci. Technol. 23, 2675 (2005). [CrossRef]
  13. K. J. Klein Koerkamp, S. Enoch, F. B. Sagerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  14. W. Fan, S. Zhang, B. Minhas, K. J. Mallor, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  15. Y. Poujet, J. Salvi, and F. I. Baida, Opt. Lett. 32, 2942 (2007). [CrossRef] [PubMed]
  16. Y. H. Ye, Y. Cao, Z. B. Wang, D. Yan, and J. Y. Zhang, Appl. Phys. Lett. 94, 081118 (2009). [CrossRef]
  17. Y. Ye, Z. Wang, D. Yan, and J. Zhang, Opt. Lett. 32, 3140 (2007). [CrossRef] [PubMed]
  18. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, J. Opt. Soc. Am. A 16, 1168 (1999). [CrossRef]
  19. J. Helszajn, Ridge Waveguides and Passive Microwave Components (Institution of Electrical Engineers, 2000). [CrossRef]
  20. R. D. Grober, R. J. Schoelkoph, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997). [CrossRef]
  21. K. Şendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004). [CrossRef]
  22. E. X. Jin and X. Xu, Jpn. J. Appl. Phys. 43, 407 (2004). [CrossRef]
  23. L. Wang and X. Xu, Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  24. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006). [CrossRef] [PubMed]
  25. HFSS 12.0, Ansoft LLC (2009).
  26. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited