OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 8 — Apr. 15, 2010
  • pp: 1206–1208

High-quality quantum-imaging algorithm and experiment based on compressive sensing

Liu Jiying, Zhu Jubo, Lu Chuan, and Huang Shisheng  »View Author Affiliations

Optics Letters, Vol. 35, Issue 8, pp. 1206-1208 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum imaging (QI) has some unique advantages, such as nonlocal imaging and enhanced space resolution. However, the quality of the reconstructed images and the time of data acquisition leave much to be desired. Based on the framework of compressive sensing, we propose an optimization criterion for high-quality QI whereby total variation restriction is specifically utilized for noise suppression. The corresponding reported algorithm uses a combination of a greedy strategy and the interactive reweight least-squares method. The simulation and the actual imaging experiment both show a significant improvement of the proposed algorithm the over previous imaging method.

© 2010 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Quantum Optics

Original Manuscript: December 2, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 23, 2010
Published: April 15, 2010

Liu Jiying, Zhu Jubo, Lu Chuan, and Huang Shisheng, "High-quality quantum-imaging algorithm and experiment based on compressive sensing," Opt. Lett. 35, 1206-1208 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995). [CrossRef] [PubMed]
  2. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000). [CrossRef] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. A 70, 013802 (2004). [CrossRef]
  4. Y. Zhai, X. Chen, D. Zhang, and L.-A. Wu, Phys. Rev. A 72, 043805 (2005). [CrossRef]
  5. J. Xiong, D. Cao, F. Huang, H. Li, X. Sun, and K. Wang, Phys. Rev. Lett. 94, 173601 (2005). [CrossRef] [PubMed]
  6. Y. Bai, and S. Han, Phys. Rev. A 76, 043828 (2007). [CrossRef]
  7. Y. J. Cai and S. Y. Zhu, Phys. Rev. E 71, 056607 (2005). [CrossRef]
  8. R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956). [CrossRef]
  9. Y. H. Shih, IEEE J. Sel. Top. Quantum Electron. 13, 1016 (2007). [CrossRef]
  10. O. Katz, Y. Bromberg, and Y. Silberberg, Appl. Phys. Lett. 95, 131110 (2009). [CrossRef]
  11. W. Gong and S. Han, arXiv.org, arXiv:0910.4823v1 [quant-ph] (2009).
  12. E. Candes, J. Romberg, and T. Tao, IEEE Trans. Inf. Theory 52, 489 (2006). [CrossRef]
  13. E. Candes, J. Romberg, and T. Tao, Commun. Pure Appl. Math. 59, 1207 (2006). [CrossRef]
  14. E. Candes and T. Tao, IEEE Trans. Inf. Theory 52, 5406 (2006). [CrossRef]
  15. D. L. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006). [CrossRef]
  16. T. Chan, S. Esedoglu, F. Park, and A. Yip, in The Handbook of Mathematical Models in Computer Vision, (Springer, 2005), pp. 17–32.
  17. D. Needell and J. A. Tropp, Appl. Comput. Harmon. Anal. 26, 301 (2008). [CrossRef]
  18. B. Wohlberg, and P. Rodriguez, IEEE Signal Process. Lett. 14, 12 (2007).
  19. Y. Shih, SPIE Newsroom (July 28, 2009).
  20. R. E. Meyers, K. S. Deacon, Vacuum 83, 244 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited