OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 8 — Apr. 15, 2010
  • pp: 1215–1217

Shaped nondiffracting beams

Carlos López-Mariscal and Kristian Helmerson  »View Author Affiliations

Optics Letters, Vol. 35, Issue 8, pp. 1215-1217 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that nondiffracting beams can be generated with an arbitrary transverse shape. In particular, we show that the azimuthal complex modulation of the angular spectra of Helmholtz–Gauss wave fields constitutes a degree of freedom sufficient to tailor nondiffracting beams with an intensity pattern of choice.

© 2010 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(220.3740) Optical design and fabrication : Lithography
(020.3320) Atomic and molecular physics : Laser cooling
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Image Processing

Original Manuscript: November 9, 2009
Revised Manuscript: January 31, 2010
Manuscript Accepted: March 7, 2010
Published: April 15, 2010

Carlos López-Mariscal and Kristian Helmerson, "Shaped nondiffracting beams," Opt. Lett. 35, 1215-1217 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987). [CrossRef] [PubMed]
  2. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002). [CrossRef] [PubMed]
  3. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. Stevenson, M. B. Agate, F. J. Gunn-Moore, C. T. A. Brown, and K. Dholakia, Appl. Phys. Lett. 91, 053902 (2007). [CrossRef]
  4. C. Yu, M. R. Wang, A. J. Varela, and B. Chen, Opt. Commun. 177, 369 (2000). [CrossRef]
  5. R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, Opt. Commun. 122, 169 (1996). [CrossRef]
  6. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002). [CrossRef]
  7. J. C. Gutiérrez-Vega and M. A. Bandres, J. Opt. Soc. Am. A Opt. Image Sci. Vis 22, 289 (2005). [CrossRef] [PubMed]
  8. This reduces to the Fourier–Bessel transform, also called a Hankel transform, for azimuthally symetric fields.
  9. D. M. Cottrell, J. M. Craven, and J. A. Davis, Opt. Lett. 32, 298 (2007). [CrossRef] [PubMed]
  10. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002). [CrossRef]
  11. R. Brauer, F. Wyrowsky, and O. Byngdahl, J. Opt. Soc. Am. A 8, 572 (1991). [CrossRef]
  12. M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979). [CrossRef]
  13. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901-l (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited