OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 8 — Apr. 15, 2010
  • pp: 1218–1220

Resonant cavity linear interferometric intensity modulator

Nazanin Hoghooghi, Ibrahim Ozdur, Mehmetcan Akbulut, Josue Davila-Rodriguez, and Peter J. Delfyett  »View Author Affiliations

Optics Letters, Vol. 35, Issue 8, pp. 1218-1220 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an intensity modulator based on injection locking of a resonant cavity with gain that has a linear transfer function, multigigahertz bandwidth, possible optical gain, and very low V π . The arcsine phase response of the injection-locked resonant cavity placed in one arm of a Mach–Zehnder interferometer is the key to the true linear performance of this modulator. The first (to our knowledge) demonstration of this modulator with 5 GHz bandwidth, V π of 2.6 mV , and 95 dB spur-free dynamic range is reported here.

© 2010 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(230.4110) Optical devices : Modulators
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 7, 2009
Revised Manuscript: March 10, 2010
Manuscript Accepted: March 10, 2010
Published: April 15, 2010

Nazanin Hoghooghi, Ibrahim Ozdur, Mehmetcan Akbulut, Josue Davila-Rodriguez, and Peter J. Delfyett, "Resonant cavity linear interferometric intensity modulator," Opt. Lett. 35, 1218-1220 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006). [CrossRef]
  2. D. J. Fernandes Barros and J. M. Kahn, J. Lightwave Technol. 27, 2370 (2009). [CrossRef]
  3. D. Novak, IEEE LEOS Newsletter 23, 21 (2009).
  4. R. Sadhwani and B. Jalali, J. Lightwave Technol. 21, 3180 (2003). [CrossRef]
  5. P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999). [CrossRef]
  6. B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009). [CrossRef]
  7. X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003). [CrossRef]
  8. A. Djupsjöbacka, IEEE Photon. Technol. Lett. 4, 869 (1992). [CrossRef]
  9. G. E. Betts, IEEE Trans. Microwave Theory Tech. 42, 2642 (1994). [CrossRef]
  10. J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994). [CrossRef]
  11. R. Adler, in Proceedings of the IRE (IEEE, 1946), Vol. 34, pp. 351–357. [CrossRef]
  12. A. E. Siegman, in Lasers (University Science Books, 1986), pp. 1129–1179.
  13. E. Lau, X. Zhao, H. Suang, D. Parekh, C. C. Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008). [CrossRef] [PubMed]
  14. A. Yariv, in Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 558–603.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited