OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 1 — Jan. 1, 2011
  • pp: 67–69

Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener  »View Author Affiliations

Optics Letters, Vol. 36, Issue 1, pp. 67-69 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional complete photonic-bandgap materials offer unique opportunities regarding the integration of optical waveguide architectures in three dimensions. However, corresponding experimental realizations are truly sparse. Here, we fabricate such waveguides using direct laser writing and a silicon double-inversion procedure. The optical characterization is in good agreement with theoretical calculations, raising hopes that even more complex architectures may soon come into reach.

© 2011 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:

Original Manuscript: September 23, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 6, 2010
Published: December 23, 2010

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, "Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion," Opt. Lett. 36, 67-69 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z.-Y. Li and K. M. Ho, J. Opt. Soc. Am. B 20, 801 (2003). [CrossRef]
  2. A. Chutinan and S. John, Phys. Rev. B 72, 161316 (2005). [CrossRef]
  3. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Science 305, 227 (2004). [CrossRef] [PubMed]
  4. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, Appl. Phys. Lett. 88, 171107 (2006). [CrossRef]
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004). [CrossRef] [PubMed]
  6. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photon. 2, 688 (2008). [CrossRef]
  7. S. Kawashima, K. Ishizaki, and S. Noda, Opt. Express 18, 386 (2010). [CrossRef] [PubMed]
  8. S. A. Rinne, F. García-Santamaría, and P. V. Braun, Nat. Photon. 2, 52 (2008). [CrossRef]
  9. Y. Lin and P. R. Herman, J. Appl. Phys. 98, 063104-1 (2005).
  10. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, Adv. Funct. Mater. 20, 1038 (2010). [CrossRef]
  11. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, Adv. Mater. 18, 457 (2006). [CrossRef]
  12. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, Opt. Lett. 35, 1094(2010). [CrossRef] [PubMed]
  13. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001). [CrossRef] [PubMed]
  14. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996). [CrossRef]
  15. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited