OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 1 — Jan. 1, 2011
  • pp: 76–78

High-resolution Cs 133 6 S –6 D , 6 S –8 S two-photon spectroscopy using an intracavity scheme

You-Huan Chen, Tze-Wei Liu, Chien-Ming Wu, Chien-Chung Lee, Chao-Kuei Lee, and Wang-Yau Cheng  »View Author Affiliations

Optics Letters, Vol. 36, Issue 1, pp. 76-78 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter presents an intracavity scheme for diode laser based two-photon spectroscopy. To demonstrate generality, three Cs 133 hyperfine transition groups of different wavelengths are shown. For the 6S–6D transitions, we achieved a 10 2 times better signal-to-noise ratio than in previous work [ J. Phys. Soc. Jpn. 74, 2487 (2005)] with 10 3 times less laser power, revealing some previously vague and unobserved spectra. Possible mutual influences between the two-photon absorber and laser cavity were investigated for the first time to our knowledge, which leads to the application of a reliable hand-sized optical frequency reference. Our approach is applicable for most of the two-photon spectroscopy of alkali atoms.

© 2011 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6190) Spectroscopy : Spectrometers
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 10, 2010
Revised Manuscript: November 13, 2010
Manuscript Accepted: November 18, 2010
Published: January 5, 2011

You-Huan Chen, Tze-Wei Liu, Chien-Ming Wu, Chien-Chung Lee, Chao-Kuei Lee, and Wang-Yau Cheng, "High-resolution 133Cs 6S–6D, 6S–8S two-photon spectroscopy using an intracavity scheme," Opt. Lett. 36, 76-78 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005). [CrossRef]
  2. Professor Nobuo Nisimiya, Tokyo Polytechnic University, Atsugi-City, Kanagawa, 243-0297 Japan, nisimiya@em.t-kougei.ac.jp (personal communication, November 8, 2010).
  3. M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007). [CrossRef]
  4. Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010). [CrossRef]
  5. For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein. [CrossRef]
  6. For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999). [CrossRef]
  7. For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity. [CrossRef]
  8. C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, Opt. Lett. 32, 536 (2007). [CrossRef]
  9. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995). [CrossRef]
  10. W. T. Hill, III, T. W. Hansch, and A. L. Schawlow, Appl. Opt. 24, 3718 (1985). [CrossRef]
  11. W. Jamroz, D. Hugon, T. B. Cave, A. Guest, and A. D. May, Appl. Opt. 23, 2906 (1984), and references therein. [CrossRef] [PubMed]
  12. Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996). [CrossRef]
  13. G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978). [CrossRef]
  14. P. Cerez and R. Felder, Appl. Opt. 22, 1251 (1983). [CrossRef] [PubMed]
  15. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz. [CrossRef]
  16. P. Fendel, D. Bergeson, Th. Udem, and T. W. Hansch, Opt. Lett. 32, 701 (2007). [CrossRef] [PubMed]
  17. V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003). [CrossRef] [PubMed]
  18. W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited