OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 10 — May. 15, 2011
  • pp: 1740–1742

Minimization of the temperature coefficient of resonance frequency shift in the coherent population trapping clock

Ke Deng, Xuzong Chen, and Zhong Wang  »View Author Affiliations


Optics Letters, Vol. 36, Issue 10, pp. 1740-1742 (2011)
http://dx.doi.org/10.1364/OL.36.001740


View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the relationship between the frequency shift of coherent population trapping resonance and the cell temperature of Rb 85 . Results show that the temperature coefficient of the frequency shift can be reduced by buffer gas pressure adjustment and light shift optimization. When the contribution of buffer gas collision to temperature coefficient of frequency shift is less than 0.3 Hz / K , the contribution of light shift to the temperature coefficient of frequency shift becomes obvious. Under this cancelling effect, we can reduce the rate of total frequency shift to near zero.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.6580) Atomic and molecular physics : Stark effect
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: February 8, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: April 10, 2011
Published: May 4, 2011

Citation
Ke Deng, Xuzong Chen, and Zhong Wang, "Minimization of the temperature coefficient of resonance frequency shift in the coherent population trapping clock," Opt. Lett. 36, 1740-1742 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-10-1740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, Phys. Rev. Lett. 92, 110801 (2004). [CrossRef] [PubMed]
  2. J. Vanier, A. Godone, and F. Levi, Phys. Rev. A 58, 2345(1998). [CrossRef]
  3. J. Vanier, Appl. Phys. B 81, 421 (2005). [CrossRef]
  4. E. Arimondo and G. Orriols, Lett. Nuovo Cimento 17, 333 (1976). [CrossRef]
  5. D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, Electron. Lett. 46, 1069 (2010). [CrossRef]
  6. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989). [CrossRef]
  7. B. Bean and R. Lambert, Phys. Rev. A 13, 492 (1976). [CrossRef]
  8. K. Deng, T. Guo, D. W. He, X. Y. Liu, D. Z. Guo, X. Z. Chen, and Z. Wang, Appl. Phys. Lett. 92, 211104 (2008). [CrossRef]
  9. K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, Phys. Lett. A 373, 1130 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited